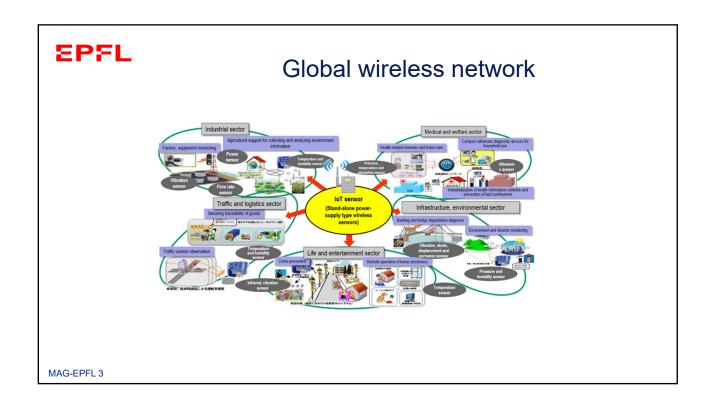
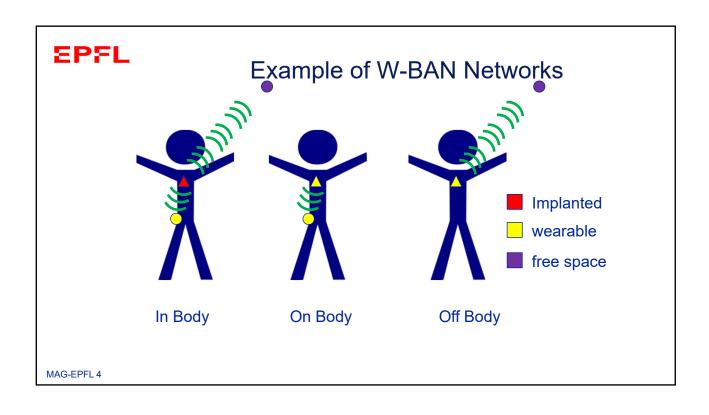
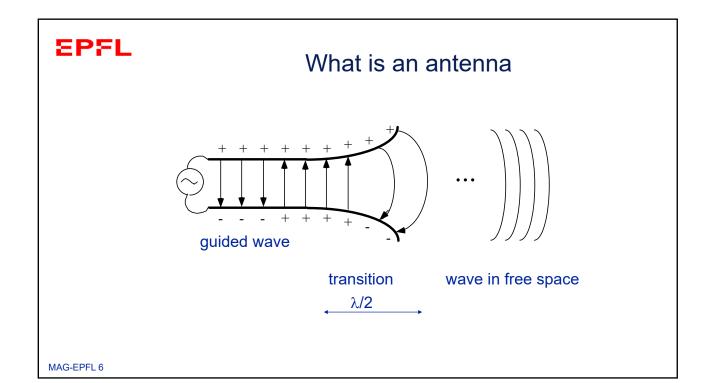
Antennas for EAWS


Anja Skrivervik anja.skrivervik@epfl.ch, 021 693 4635


MAG-EPFL 1

EPFL

Outline


- What is the problem
- Electrically Small Antennas
- Antennas in Lossy media (implants and wearables)
- Some regulations
- Some simulation issues

Why are antennas important for wireless powering

- · Saving power is crucial
- Parts of systems (typically sensors) can be small
- Wireless powering can take place in or on a lossy medium (body)
- The difference between a good or bad antenna design can make differences of up to 10 dB in power efficiency of the system

What is an antenna?

- An antenna transforms a guided wave to a radiated wave
- An antenna is a link between Krichhoff's world (circuit) and Maxwell's world (fields)
- An antenna is a spatial filter and a spectral filter
- · An antenna is a one port device
- An antenna is a two port device
- An antenna is part of a system

MAG-EPFL 7

EPFL

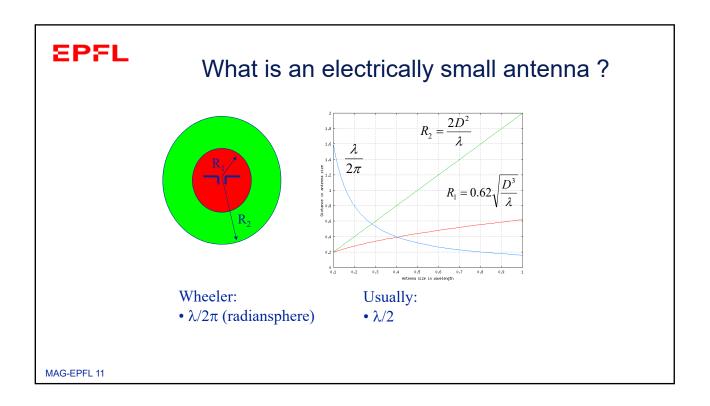
Circuit characteristics

- Frequency response of the antenna (antenna bandwidth)
- Input impedance of the antenna
- Reflection coefficient of the antenna

Can be measured using S parameter measurements or Power measurements

Field characteristics

- Radiation pattern
- Directivity
- Gain
- Polarization
- Radiation efficiency

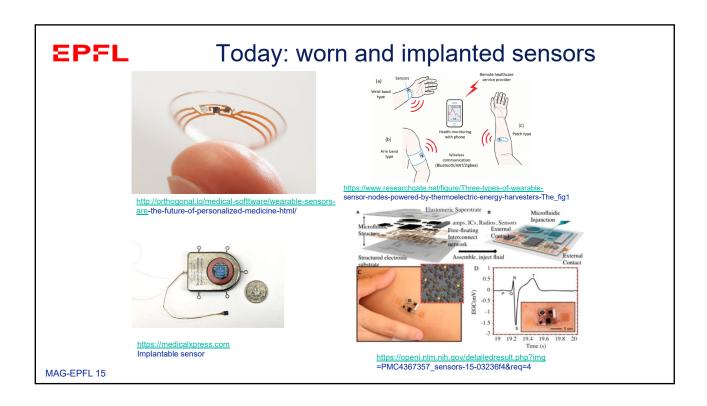

Characterizing those features imply the measurement of an attenuation coefficient (transfer function). They need to be characterized in an anechoic chamber or an outdoor range

MAG-EPFL 9

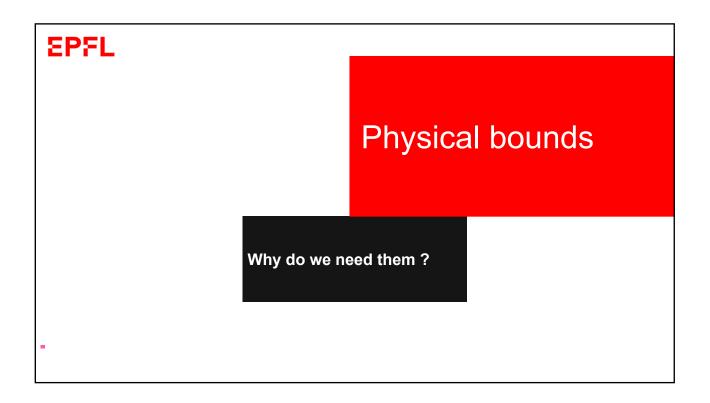
EPFL

Cases where antenna size is important

- Sensor telemetry (electrically small)
- Implants and wearables



Tip : for good ideas look in old radio-amateur publications http://dspt.club.fr/Poldhu.htm



The new millenium: loT and loE Animal Vehicle Monitoring Machine Monitoring Data Acquisition Network Data Distribution Network Phonitoring Data Distribution Network Data Distri

https://www.elprocus.com/introduction-to-wireless-sensor-networks-types-and-applications/

Application example The frog is the ground plane

Physical bounds of antennas

- Provide a limitation to the antenna characteristics
- Are usually hard to reach
- Can be used as benchmarks to assess designs
- Are extremely useful to the system and design engineers to assess feasibility
- Bounds are existing for classic ESAs
- Classic bounds for ESAs were introduced 70 years ago and were based on Spherical Wave Expansions
- Research on bounds for implantable antennas has just started.
 Can we use SWE to gain insight in implantable antenna characteristics?

Two classic uses of spherical wave expansions: Limits on quality factor and gain

- · L.J. Chu, "Physical limitations on omni-directional antennas", Journal of Applied Physics,. 19, 1948, pp. 1163-1175.
- R.F. Harrington, "On the Gain and Beamwidth of Directional Antennas", IRE Transactions on Antennas and Propagation, vol. AP-6, 1958, pp. 219-225.

MAG-EPFL 19

EPFL

Bandwidth and quality factor

- · No exact link between bandwidth and quality factor (antenna modelisation by lumped RLC circuit is approximate)
- · For a second order lumped series RLC circuit, the half power bandwidth is given by:

valid for Q >>1

Q of an antenna (linear polarization case)

- circuit approximation
- spherical wave expansion

MAG-EPFL 21

EPFL

Minimum quality factor

The antenna is approximated by a RLC circuit; and at resonance:

$$Q = \frac{\omega W}{P}$$

If the circuit is matched by a lossless network:

$$Q = \frac{2\omega W_{e}}{P} for W_{e} > W_{m}$$
$$Q = \frac{2\omega W_{m}}{P} for W_{e} < W_{m}$$

and

$$B_{_{3dB}} = \frac{1}{O}$$

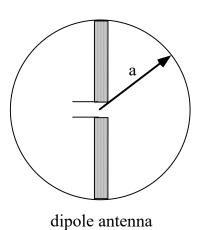
Minimum quality factor

- The antenna is enclosed in the smallest possible sphere.
- The fields are represented by spherical waves functions.

Main problem: Evaluation of the energy stored in the reactive field.

- Chu: Equivalent ladder network (approximation).
 - L.J. Chu, Journal of Appl. Physics, vol. 19, pp. 1163-1175, 1948
- McLean: Directly from the fields.
 - J.S. Mc Lean, IEEE Trans on AP, vol. AP-44, pp. 672-675, 1996

MAG-EPFL 23


EPFL

Chu's method

- Enclose the antenna in the smallest possible sphere (radius a)
- The fields external to the sphere are represented by a weighted sum of spherical functions. These mode are orthogonal, and carry thus power independently from each other
- Q is computed in terms of the time average non propagating energy <u>external</u> to the sphere, and of the radiated power. The energy stored inside the sphere would increase the Q
- · The computation is difficult, because :
 - the total time-average stored energy outside the sphere is infinite, as for any propagating wave
 - A technique to separate the non propagation energy from the total energy is needed. We cannot simply use the near field components (E and H) because the energy is non-linear

Chu's method

MAG-EPFL 25

EPFL

Chu's method (linear polarization)

Compute the wave impedance of the modes

$$Z_{+r}^{TM} = -\frac{k}{j\omega\epsilon} \; \frac{\hat{H_{n}^{'}}^{(2)}(kr)}{\hat{H}_{n}^{(2)}(kr)} = j\nu \frac{\hat{H_{n}^{'}}^{(2)}(kr)}{\hat{H}_{n}^{(2)}(kr)}, \label{eq:ZTM}$$

· Use the modified Hankel functions

$$Z_{+r}^{TM} = j\nu \frac{\hat{H}_{n}^{'(2)}(kr)}{\hat{H}_{n}^{(2)}(kr)} = j\nu \frac{\left(krh_{n}^{(2)}\right)'}{krh_{n}^{(2)}},$$

Chu's method (linear polarization)

· Use the recurrence formulas for modified Hankel functions

$$h_{n-1}^{(2)}(kr)+h_{n+1}^{(2)}(kr)=\frac{2n+1}{kr}h_n^{(2)}(kr),$$

 $\frac{n+1}{kr}h_n^{(2)}(kr) + h_n^{(2)'}(kr) = h_{n-1}^{(2)}(kr).$

· Which can be re-arranged into

$$\frac{h_{n-1}^{(2)}}{h_n^{(2)}} = \frac{1}{\frac{2n-1}{kr} - \frac{h_{n-2}^{(2)}}{h_{n-1}^{(2)}}}.$$

MAG-EPFL 27

EPFL

Chu's method (linear polarization)

Finally

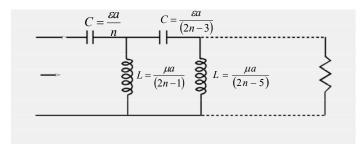
$$Z_{+r}^{TM} = \nu \left\{ \frac{n}{jkr} + \frac{1}{\frac{2n-1}{jkr} + \frac{1}{\frac{2n-3}{jkr}}} \right.$$

$$\left. \frac{1}{\frac{3}{jkr} + \frac{1}{\frac{1}{jkr} + 1}} \right\},$$

where
$$\nu=\sqrt{\frac{\mu}{\epsilon}},\,c=\frac{1}{\sqrt{\epsilon\mu}}$$
 and $kr=\frac{2\pi r}{\lambda}=\frac{2r\omega}{c},$

Chu's method (linear polarization)

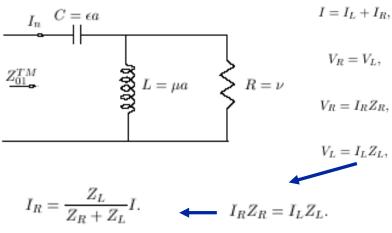
Thus


$$\begin{split} Z_{+r}^{TM} &= \frac{n}{j\omega r\epsilon} + \frac{1}{\frac{2n-1}{j\omega r\mu}} + \frac{1}{\frac{2n-3}{j\omega r\epsilon}} \\ & \ddots \\ & \frac{3}{j\omega r\epsilon} + \frac{1}{\frac{1}{j\omega r\mu} + \nu} \end{split}$$

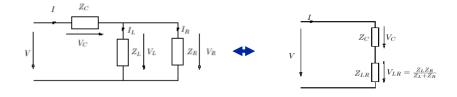
This is the transfer function of a Cauer network

MAG-EPFL 29

EPFL


The ladder network: TM_n modes

$$Q = \frac{2\omega W}{\overline{P}} \qquad W_{e} = \frac{1}{2}CV_{c}V_{c}^{*} \qquad P = RI_{R}I_{R}^{*}$$


Example : TM₀₁ mode only

MAG-EPFL 31

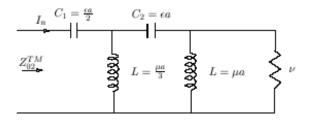
EPFL

Example: TM₀₁ mode only

$$V_c = V \frac{Z_C}{Z_C + Z_{LR}}.$$

Example: TM₀₁ mode only

Finally:

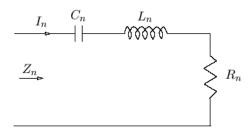

$$Q_1 = \frac{1}{ka} + \left(\frac{1}{ka}\right)^3$$

Theoretical minmum Q for an antenna exciting the TM_{01} mode only

MAG-EPFL 33

EPFL

Antenna exciting two modes

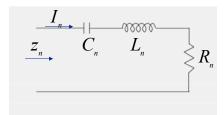


$$Q_2 = \frac{3}{ka} + \frac{6}{(ka)^3} + \frac{18}{(ka)^5}.$$

Q₂ is always larger than Q₁

Higher order mode approximation

• Too complicated for many modes (difficult to compute the energy stored in each capacitor and inductor of the ladder). We use an approximate equivalent circuit for each mode



MAG-EPFL 35

EPFL

The ladder network:

approximation for higher order modes

where

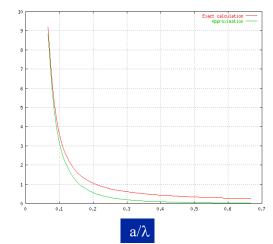
$$Q_{n} = \frac{1}{2\eta} (kr)^{2} \left| h_{n}^{(2)} \right|^{2} \left[\omega \frac{\partial X_{n}}{\partial \omega} - X_{n} \right]$$

$$X_{n} = \eta \frac{kr j_{n} (kr j_{n}) + kr n_{n} (kr n_{n})}{(kr)^{2} |h_{n}^{(2)}|^{2}}$$

Higher order mode approximation

Result for TM₀₁ mode

$$Q_1 = \frac{1 + 2(ka)^2}{(ka)^3(1 + (ka)^2)}.$$


Exact solution

$$Q_1 = \frac{1}{ka} + \left(\frac{1}{ka}\right)^3$$

MAG-EPFL 37

EPFL

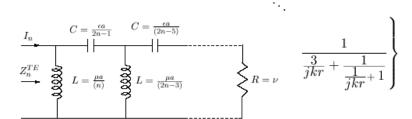
Lowest possible Q for linearly polarized antennas


$$Q_{\min} = \frac{1}{ka} + \frac{1}{(ka)^3}$$

$$Q_{\min} = \frac{1 + 2(ka)^2}{(ka)^3 (1 + (ka)^2)}$$

Chu's method: TE modes

$$Y_{+r}^{TE} = -\frac{1}{\nu} \left\{ \frac{n}{jkr} + \frac{1}{\frac{2n-1}{jkr} + \frac{1}{\frac{2n-3}{jkr}}} \right.$$



MAG-EPFL 39

EPFL

Chu's method: TE modes

$$Y_{+r}^{TE} = -\frac{1}{\nu} \left\{ \frac{n}{jkr} + \frac{1}{\frac{2n-1}{jkr} + \frac{1}{\frac{2n-3}{jkr}}} \right\}$$

Chu's method

· Linear polarization antenna: Either TE or TM mode

$$Q_{\min} = \frac{1}{ka} + \frac{1}{(ka)^3}$$

 Circular polarization: combination of TE and TM modes with the proper phase shift

$$Q_1 = \frac{1}{2} \frac{1 + 3(ka)^2}{(ka)^3 (1 + (ka)^2)}.$$

MAG-EPFL 41

EPFL

The field method: TM case (e.g. dipole)

$$w_{\rm e} = \frac{1}{2} \varepsilon \mathbf{E} \mathbf{E}^* \qquad w_{\rm e}^{rad}$$

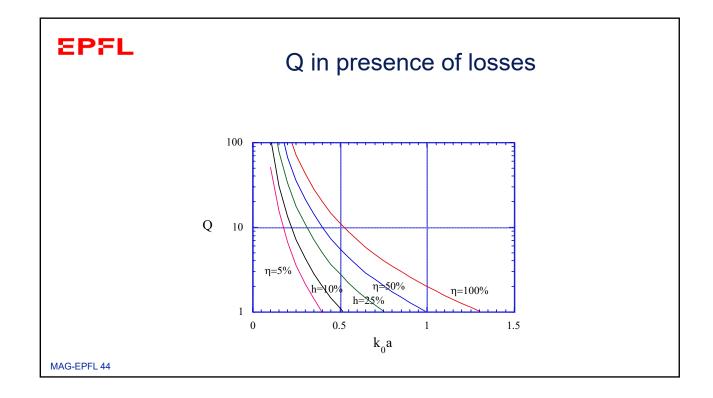
$$w_{\rm e}^{tot}$$

$$W_{\rm e}^{\rm rip} = W_{\rm e}^{\rm tot} - W_{\rm e}^{\rm rad}$$

$$W_{\rm e}^{np} = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{a}^{\infty} w_{\rm e}^{np} r^2 \sin\theta \ dr \ d\theta \ d\varphi$$

$$P_{rad} = \oint_{S} \left(\mathbf{E} \times \mathbf{H} \right) ds = \int_{0}^{2\pi} \int_{0}^{\pi} E_{\theta} H_{\phi}^{*} \sin \theta \ d\theta \ d\phi$$

Example : TM₀₁ mode only


Finally:

$$Q = \frac{1}{ka} + \left(\frac{1}{ka}\right)^3$$

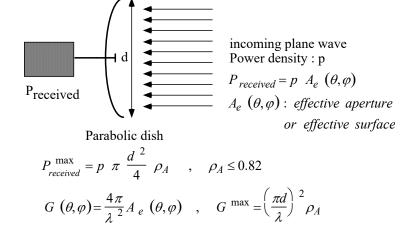
Theoretical minmum Q for an antenna exciting the TM_{01} mode Only

k is the wavenumber

A the radius of the sphere enclosing the antenna

Maximum gain of an antenna

The gain is defined as


$$G(\theta) = \frac{4\pi r^2 S_r(\theta)}{\overline{P}_f},$$

 Where S_r is the r component of the Poynting vector and P_f is the total radiated power, obtained integrating S_r over a large sphere

MAG-EPFL 45

EPFL

Maximum gain of an antenna: intuitive approach

Maximum gain of an antenna

Harrington, IRE Trans on AP, vol. AP-6, pp. 219-225, 1958

• Spherical wave functions are obtained by solving Helmoltz' equation in spherical coordinated. The fields radiated by an antenna oriented so that the maximum is at θ = π /2 and φ =0 is given by :

$$E_{\theta} = \frac{1}{\sin \theta} \sum_{m,n} m A_{mn} \hat{H}_n^{(2)}(kr) P_n^m(\cos \theta) \sin(m\phi + \alpha_{mn})$$
$$-\frac{\sin \theta}{j\omega \epsilon r} \sum_{m,n} B_{mn} \hat{H}_n^{(2)} P_n^{m'}(\cos \theta) \cos(m\phi + \beta_{mn}),$$

$$E_{\phi} = -\sin\theta \sum_{m,n} A_{mn} \hat{H}_{n}^{(2)}(kr) P_{n}^{m'}(\cos\theta) \cos(m\phi + \alpha_{mn})$$
$$-\frac{1}{j\omega\epsilon r \sin\theta} \sum_{m,n} m B_{mn} \hat{H}_{n}^{(2)'} P_{n}^{m}(\cos\theta) \sin(m\phi + B_{mn}).$$

MAG-EPFL 47

EPFL

Maximum gain of an antenna

The radiated field is obtained when r is large, thus

$$H_n^{(2)}{}_{kr\to\infty}(kr) \sim \sqrt{\frac{2}{(\pi kr)}} e^{-jkr-\frac{1}{2}n\pi-\frac{\pi}{4}}. \label{eq:hn}$$

· Which is equivalent to

$$\hat{H}_{n\ kr\rightarrow\infty}^{(2)}(kr)\sim j^{n+1}\frac{e^{-jkr}}{kr}.$$

$$\frac{\partial}{\partial r} \left[r \hat{H}_n^{(2)}{}_{kr \to \infty}(kr) \right] \sim j^n e^{-jkr}.$$

Maximum gain of an antenna

The radiated fields are given by

$$E_{\theta} = \frac{e^{-jkr}}{kr} \sum_{m,n} j^{m+1} \left[\frac{mA_{mn}}{\sin \theta} P_n^m(\cos \theta) \sin(m\phi + \alpha_{mn}) + \sqrt{\frac{\mu}{\epsilon}} \sin \theta B_{mn} P_n^{m'}(\cos \theta) \cos(m\phi + \beta_{mn}) \right],$$

$$E_{\phi} = \frac{e^{-jkr}}{kr} \sum_{m,n} j^{n+1} \left[-\sin\theta A_{mn} P_n^{m'}(\cos\theta) \cos(m\phi + \alpha_{mn}) - \sqrt{\frac{\mu}{\epsilon}} \frac{mB_{mn}}{\sin\theta} P_n^m(\cos\theta) \sin(m\phi + \beta_{mn}) \right].$$

MAG-EPFL 49

EPFL

Maximum gain of an antenna

• In the far field, the radiated power density is given by :

$$S_r = \sqrt{\frac{\epsilon}{\mu}} \left(|E_{\theta}|^2 + |E_{\phi}|^2 \right).$$

And the radiated power by

$$P = \int_0^{2\pi} d\phi \int_0^{\pi} d\theta \sin\theta \left(|E_{\theta}|^2 + |E_{\phi}|^2 \right)$$

= $\frac{4\pi}{k^2} \sum_{m,n} \frac{1}{\epsilon_m} \left[\sqrt{\frac{\epsilon}{\mu}} |A_{mn}|^2 + \sqrt{\frac{\mu}{\epsilon}} |B_{mn}|^2 \right] \frac{n(n+1)(n+m!)}{(2n+1)(n-m)!},$

$$\epsilon_m = \begin{cases} 1 & m = 0, \\ 2 & m > 0. \end{cases}$$

Maximum gain of an antenna

· We finally get

$$G(\frac{\pi}{2},0) = \frac{\left|\sum_{m,n} j^{n-1} \left[A_{mn} P_n^{m'}(0) + \sqrt{\frac{\mu}{\epsilon}} m B_{mn} P_n^m(0)\right]\right|^2}{\sum_{m,n} \frac{1}{\epsilon_m} \left[\left|A_{mn}\right|^2 + \frac{\mu}{\epsilon} \left|B_{mn}\right|^2\right]^2 \frac{n(n+1)(n+m)!}{(2n+1)(n-m)!}}.$$

· Which we need to maximize

MAG-EPFL 51

EPFL

Maximum gain of an antenna (linear polarization)

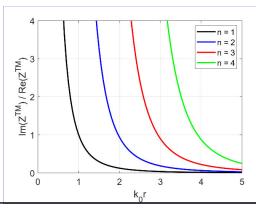
 After some cumbersome computations and using the spherical wave expansions, limiting the number of modes (wave functions) to N, we finally get:

$$G=N^2+2N$$

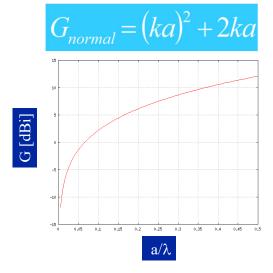
Thus, if the number of modes can be increased, the gain has potentially no limit

Maximum gain of an antenna

- · What limits the gain:
 - Possibility to manufacture an antenna radiating many propagating modes
 - Losses (higher order modes have usually higher losses)
 - · Bandwidth (the more modes, the smaller the bandwidth


MAG-EPFL 53

EPFL


Practical gain limitation

$$G = N^2 + 2N$$

Wave impedance of a TM wave
$$Z_{+r}^{TM} = \frac{j\eta}{kr} + \frac{\eta}{\left|h_n^{(2)}\right|^2} \left[\frac{2}{\pi kr} + j \left(j_n j_n + n_n n_n \right) \right]$$

EPFL Maximum gain for a practical bandwidth : N = ka

MAG-EPFL 55

EPFL

Combination of elementary sources

Depending on combination od type of source, orientation and phases, we obtain

- LP or CP
- Q₀ or Q₀/2
- G=1.5 or G=3

See: D. Pozar, New Results for Minimum Q, Maximum Gain, and Polarization Properties of Electrically Small Arbitrary Antennas, EuCAP 2009

Comparison with measured gains

Circular parabolic reflector antenna:

Size 146 λ , G_{measured} : 50.4 dBi, G_{max} : 53.3 dBi

Pyramidal horn antenna:

Size 7.5 λ , G_{measured} : 24.5 dBi, G_{max} : 27.7 dBi

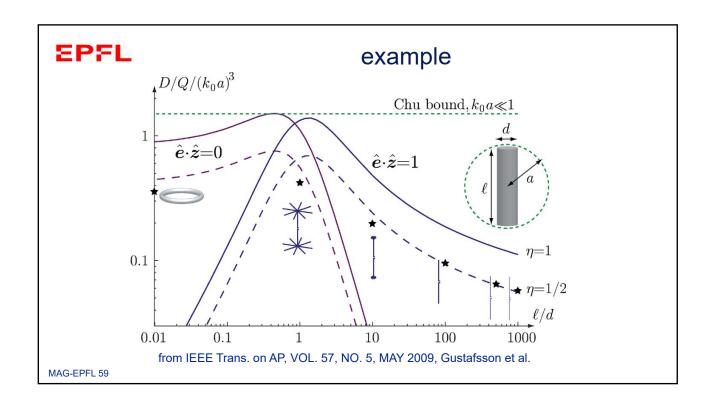
Narda horn antenna:

Size 2.5 λ , G_{measured} : 15-16 dBi, G_{max} : 18.7 dBi

Rolled slot antenna:

Size 0.2λ , G_{measured} : -11.7 dBi, G_{max} : 2.6 dBi

Slot-Dipole antenna:


Size 0.2 λ, G_{measured}: 0 dBi, G_{max}: 2.6 dBi

MAG-EPFL 57

EPFL

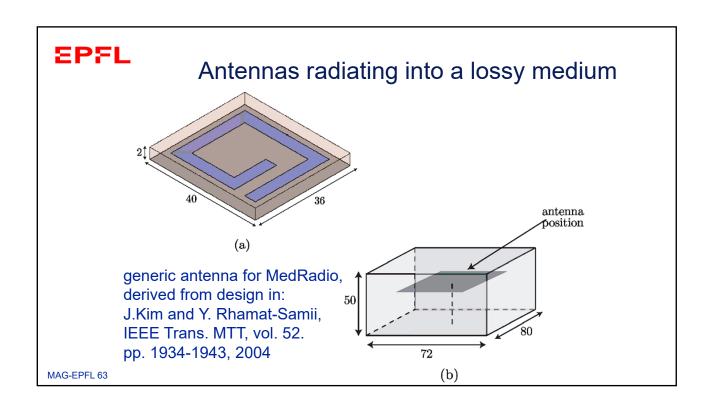
limitations including antenna form factor

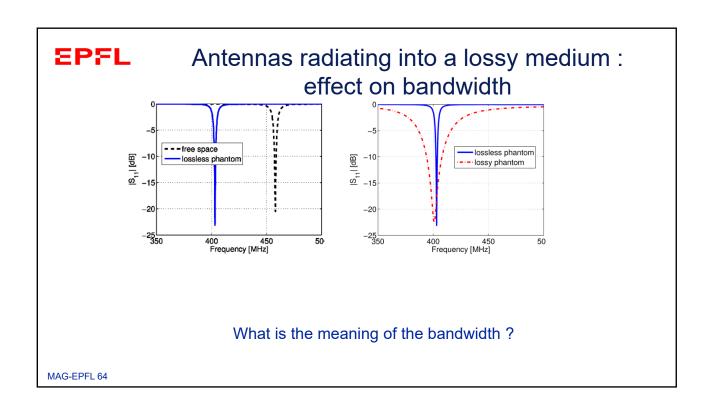
- works by several authors, the most interesting by Gustafsson et al.
- Mats Gustafsson, Christian Sohl, Gerhard Kristensson, Physical limitations on antennas of arbitrary shape, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 463, pp. 2589-2607, 2007
- Mats Gustafsson, Christian Sohl, Gerhard Kristensson, Illustrations of new physical bounds on linearly polarized antennas, IEEE transactions on antennas and propagation, vol. 59, 2009, pp. 1319-1327

IMPLANTBLE ANTENNAS

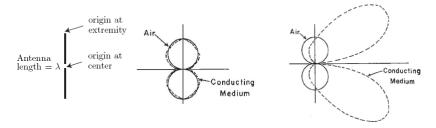
System Requirements

- Data transmission
- Wearer comfort
 - large autonomy => Low power consumption
 - · small volume, conformable, flexible
 - · sufficient reading distance
- Wearer health
 - avoid battery if possible (implants)
 - biocompatible encapsulation(implants)
 - · emission values have to be respected
 - · max SAR has to be respected
 - high reliability (implants)


MAG-EPFL 61


EPFL

Antenna requirements

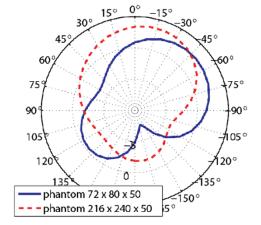

- Physically small => electrically very small @ MedRad, TETRA or ISM bands
- Enough bandwidth for the required data transmission
- Good radiation efficiency

We want to maximize the power radiated out/away of the body

Antennas radiating into a lossy medium : effect on the pattern

Antenna with uniform curent

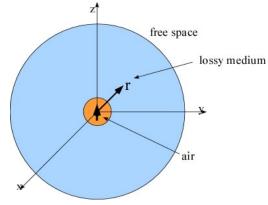
Origin at center


Origin at top

R. Moore, "Effects of a surrounding conducting medium on antenna analysis," IEEE Trans. AP., vol. 11, no. 3, pp. 216–225, May 1963

MAG-EPFL 65

EPFL


Antennas radiating into a lossy medium : effect on the pattern

In the case of our implantable antenna

What is the meaning of the radiation pattern?

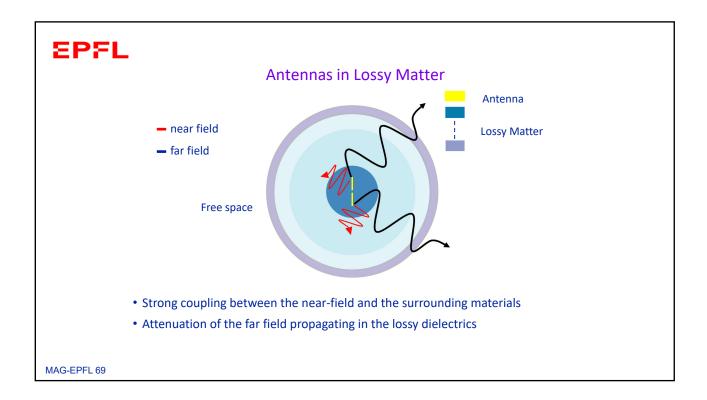
Antennas radiating into a lossy medium : Definition of efficiency?

$$P_{Rad}^{TE} \sim \frac{1}{r^3}$$

$$P_{Rad}^{TM} \sim \frac{1}{r}$$

In the case of an implanted antenna :

· Rau

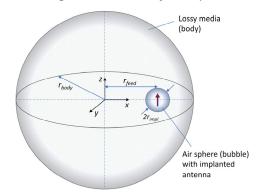

Depends on the host body !!!

MAG-EPFL 67

EPFL

Main issues

- We have an electrically small antenna problem
- But: the antenna radiates into a lossy medium first, then into free space
- An insulation layer is required between the antenna and the lossy medium
- How does this modify our design strategy from a classical electrically small antenna design?
- · How does this affect the antenna characterization?
- What is an adequate model of the host body?
- · What implications do the safety issues have ?



A better understanding is needed

THE SPHERICAL WAVE CANONICAL MODEL

Canonical Implant: the elementary dipole

 Electrically small source is located inside the surface of the body (spherical medium which can be single- or multi-layered)

Single-layer @ 403.5 MHz

IEEE Head model... ε_r = 43.5 - j34.75

Multi-layer @ 403.5 MHz

Muscle... 82mm $\varepsilon_r = 57.10 - j35.51$ Fat... 86 mm $\varepsilon_r = 5.58 - j1.83$ Dry skin... 90 mm $\varepsilon_r = 46.7 - j30.72$

Air sphere $r_{impl} = 1$ mm (unless written otherwise)

MAG-EPFL 71

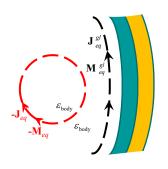
M. Bosiljevac, Z. Sipus, and A. K. Skrivervik, "Propagation in Finite Lossy Media: An Application to WBAN"

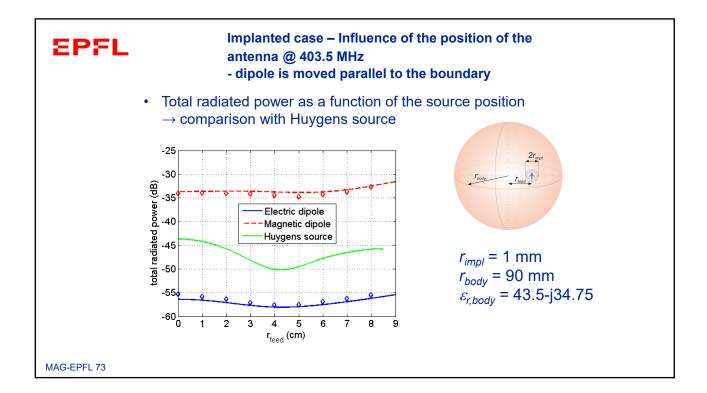
EPFL

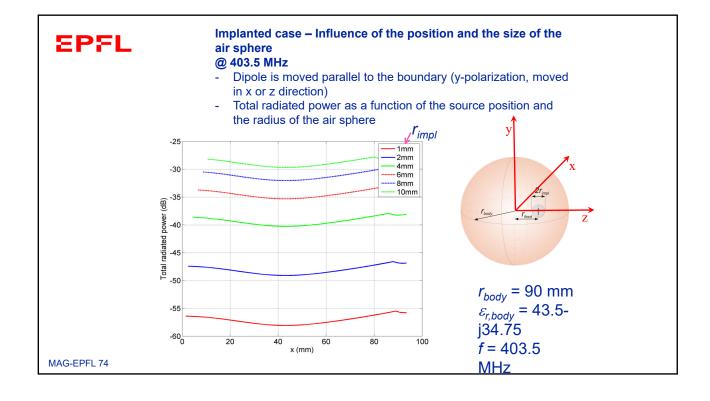
Spherical mode expansion

· We can express the EM field via spherical modes:

$$\mathbf{E} = -\sum_{n} \sum_{m} a_{mn} \mathbf{M}_{mn} + b_{mn} \mathbf{N}_{mn} \qquad \mathbf{H} = -\frac{j}{\eta} \sum_{n} \sum_{m} b_{mn} \mathbf{M}_{mn} + a_{mn} \mathbf{N}_{mn}$$

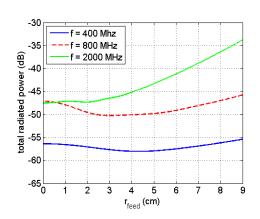

$$\mathbf{M}_{mn} = \nabla \times \mathbf{r} \psi_{mn} \qquad \mathbf{N}_{mn} = \frac{1}{k} \nabla \times \mathbf{M}_{mn} \qquad \psi_{mn}(r, \theta, \phi) = z_{n}(kr) P_{n}^{m}(\cos \theta) e^{jm\phi}$$

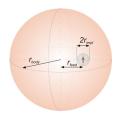

· The solution scheme:


$$\begin{cases} \widetilde{J}_{eq}(r'_{impl}, v, \mu) \\ \widetilde{M}_{eq}(r'_{impl}, v, \mu) \end{cases} \Rightarrow \begin{cases} \widetilde{E}_{eq}(r', v, \mu) \\ \widetilde{H}_{eq}(r', v, \mu) \end{cases}$$

$$\Rightarrow \begin{cases} \sum_{n,m} \widetilde{E}_{eq}(r, n, m) \\ \sum_{n,m} \widetilde{H}_{eq}(r, n, m) \end{cases} \Rightarrow \begin{cases} \sum_{n,m} \widetilde{J}_{eq}(r_{eq}, n, m) \\ \sum_{n,m} \widetilde{M}_{eq}(r_{eq}, n, m) \end{cases}$$

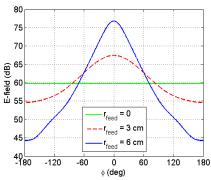
$$\Rightarrow \begin{cases} \sum_{n,m} \widetilde{E}_{scat}(r, n, m) \\ \sum_{n,m} \widetilde{H}_{scat}(r, n, m) \end{cases} \Rightarrow \begin{cases} \sum_{v,\mu} \widetilde{E}_{scat}(r'_{impl}, v, \mu) \\ \sum_{v,\mu} \widetilde{H}_{scat}(r'_{impl}, v, \mu) \end{cases}$$



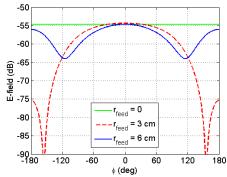


Implanted case – Influence of the position and the size of the air sphere

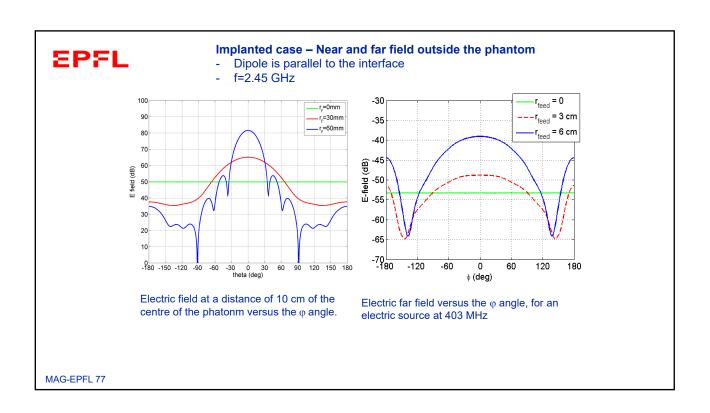
- Dipole is moved parallel to the boundary (y-polarization, moved in x or z)
- Total radiated power as a function of the frequency and of the source position

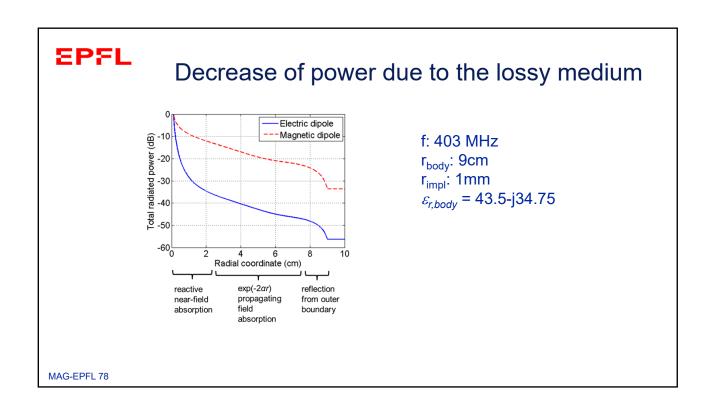

f = 403.5 MHz $\varepsilon_{\text{body}} = 43.50 - \text{j}34.75$ f = 800 MHz $\varepsilon_{\text{body}} = 41.5 - \text{j}20.22$ f = 2000 MHz $\varepsilon_{\text{body}} = 40.0 - \text{j}12.58$

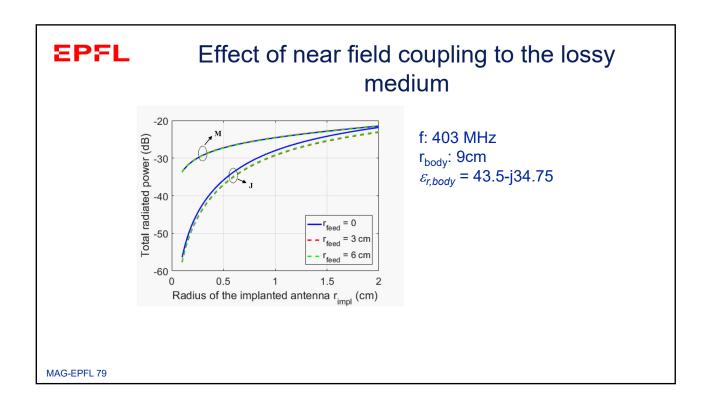
MAG-EPFL 75

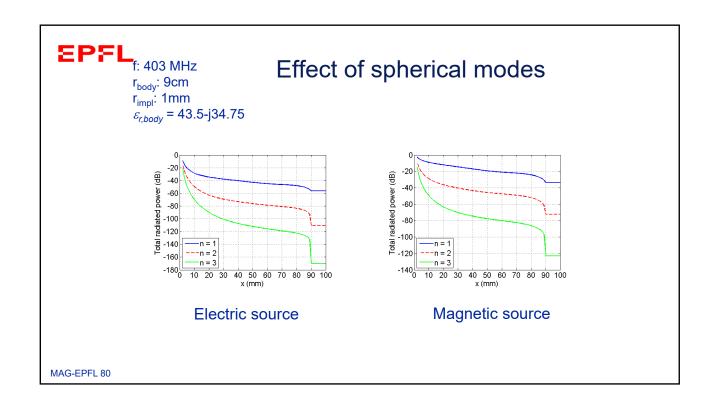

EPFL

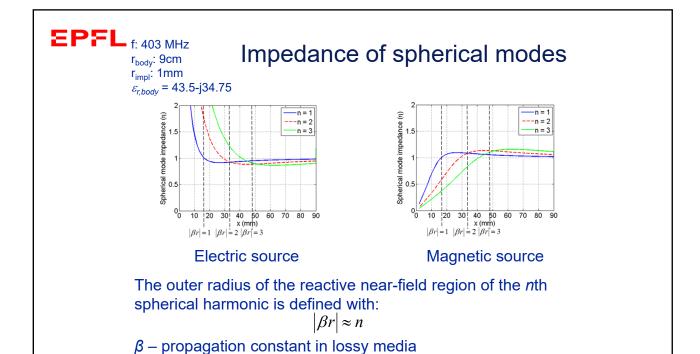
Implanted case - Near and far field outside the phantom


- Dipole is in parallel to the interface
- f=403 MHz




Electric field at a distance of 10 cm of the centre of the phantom versus the ϕ angle.




Electric far field versus the $\boldsymbol{\phi}$ angle, for an electric source at 403 MHz

MAG-EPFL 81

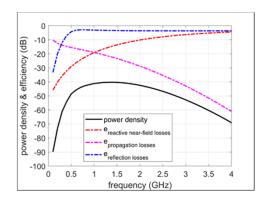
Desing rules

- The losses of an implantable antenna will depend on three main contributions: the near field losses, the propagating field losses, and the reflection at the body/air interface.
- The near field losses depend on the type of the radiating source (electric or magnetic) and the electric size of the lossless encapsulation around the antenna
- For an electrically small encapsulation, a magnetic type of antenna is more favorable than an electric one
- In order to avoid unnecessary losses, the antenna should only excite modes with order n < kr_{impl}, to keep the near fields as much as possible in the lossless encapsulation of the antenna. Indeed, as seen in Figure 11, the distance of influence of the near fields increases with the order of the mode.

EPFL First approximate bounds obtained using SWE

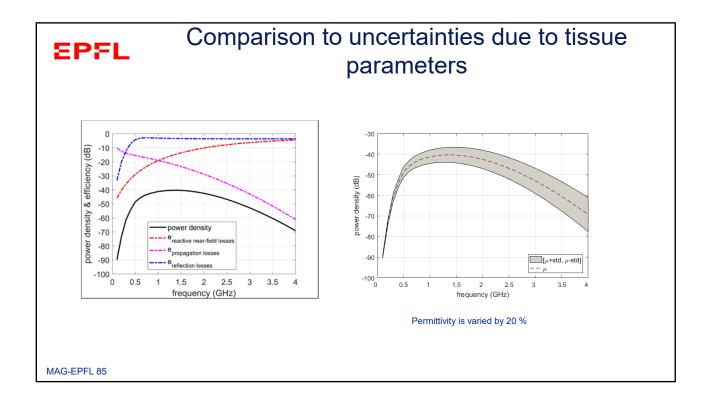
$$W_{\substack{\text{reaching free space}}} = W_{\substack{\text{entering the space}}} \cdot \frac{r_{impl}^2}{\Delta^2} \cdot e_{\substack{\text{losses in the reactive absorption place}}} \cdot e_{\substack{\text{propagating field absorption reflections}}} \cdot e_{\substack{\text{losses field absorption reflections}}}$$

$$e_{\text{propagating field}\atop \text{field absorption losses}} = \exp(-2\alpha(\Delta - r_{impl})) \qquad e_{\text{losses}\atop \text{due to}\atop \text{reflections}} = \frac{\text{Re}\left\{|T|^2/Z_{air}\right\}}{\text{Re}\left\{1/Z_{body}\right\}}, \qquad T = \frac{2Z_{air}}{Z_{air} + Z_{body}}$$

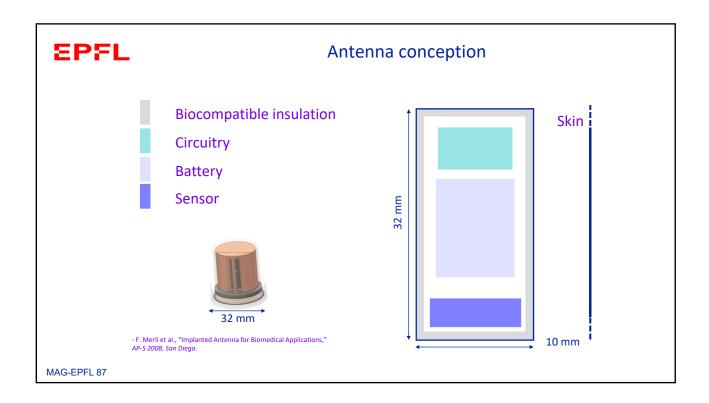

$$\begin{aligned} e_{\text{losses}} &= \frac{f_1(\Delta)}{f_1(r_{impl})}, \\ f_1(r) &= \text{Re}\left\{\eta \cdot \left(\left|k\right|^2 + \frac{2\alpha}{r} + \left(1 - \frac{k^*}{k}\right) \frac{1}{r^2} - j\frac{1}{kr^3}\right)\right\} \end{aligned}$$

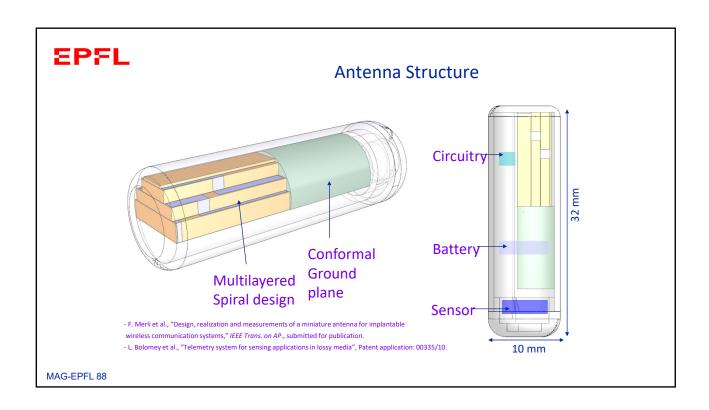
 $e_{\text{losses}}_{\text{in the reactive near-field}} = \frac{f_2(\Delta)}{f_2(r_{impl})}, \qquad f_2(r) = |k|^2 + 2\alpha/r$

Magnetic sources


MAG-EPFL 83

EPFL Application: homogeneous muscle phantom


- At low frequencies near field losses dominate
- At high frequencies propagating losses dominate


R_{impl}= 1 mm R_{body}= 90 mm

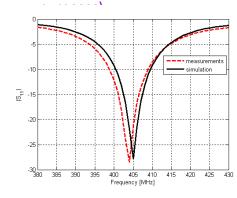
dual band antenna : data transmission @ 401-406 MHz, wake up signal @ 2.45 GHz Figure of merit: maximize reading distance

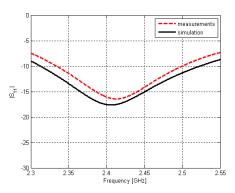
EXAMPLE1: THE DESIGN OF ANTENNA FOR AN IMPLANTABLE GENERIC BODY MONITORING MODULE

Antenna Realization

Substrate: Roget TMM ($\varepsilon_r = 9.2$)

Insulation: PEEK ($\varepsilon_r = 3.2$)



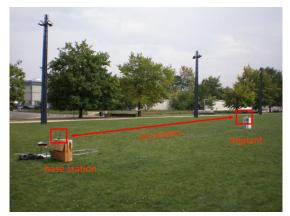

MAG-EPFL 89

EPFL

Antenna Matching measurement (in-vitro)

EM performances of the antenna alone have been checked with a feeding coaxial cable (present only for testing

System Measurements *In-vitro*


Zarlink BS is always considered System controlled via a laptop (*Labview*)

Outdoor MedRadio Tests:

- TX power -3 dBm

channel	max range [m]
0	7
4	14
9	14

MAG-EPFL 91

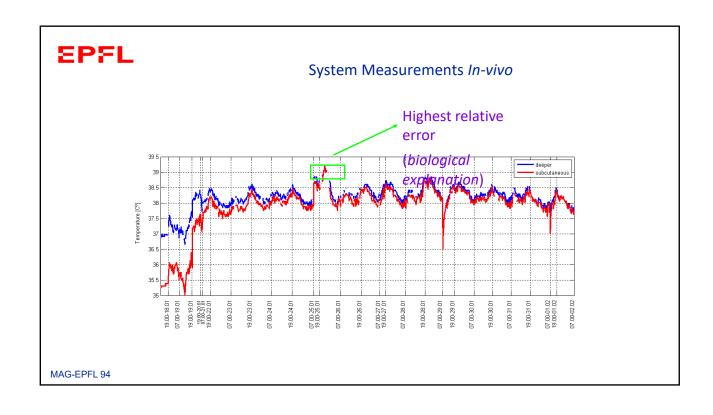
EPFL

System In-vivo

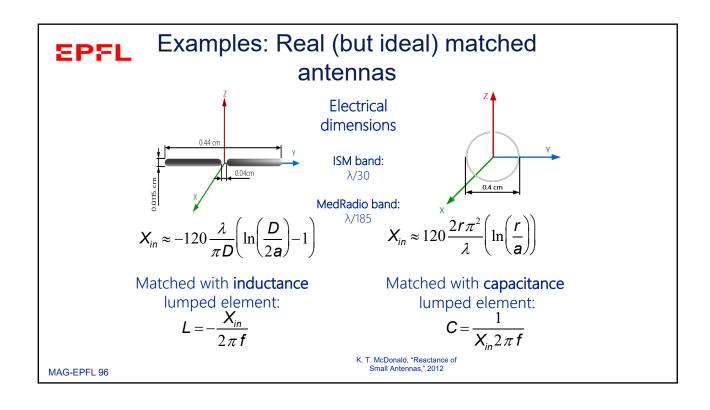
Implantation (in collaboration with the Stem Cell Dynamics Laboratory, LDCS):

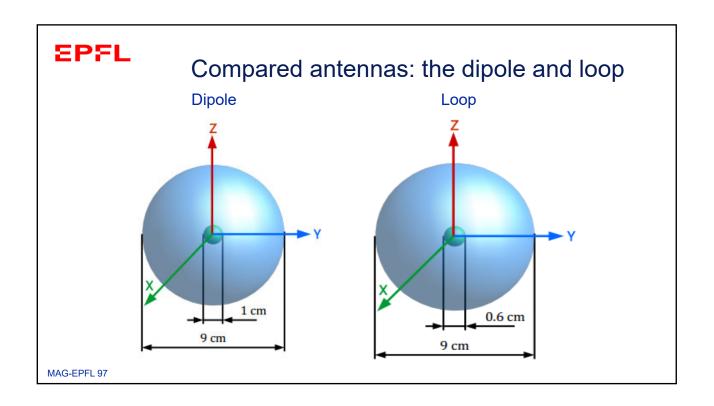
Two devices have been implanted at different locations,

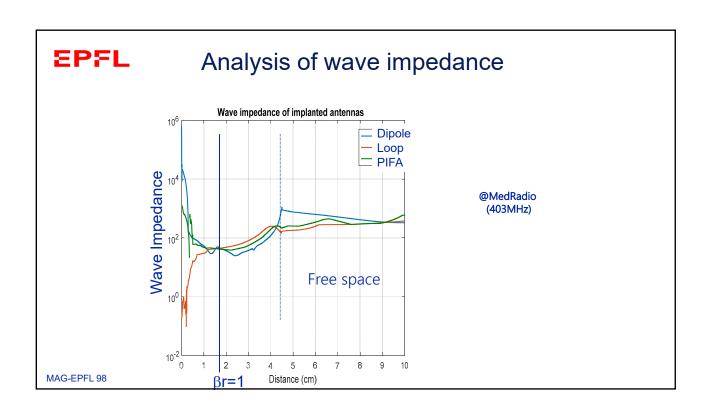
- subcutaneous (5 mm)

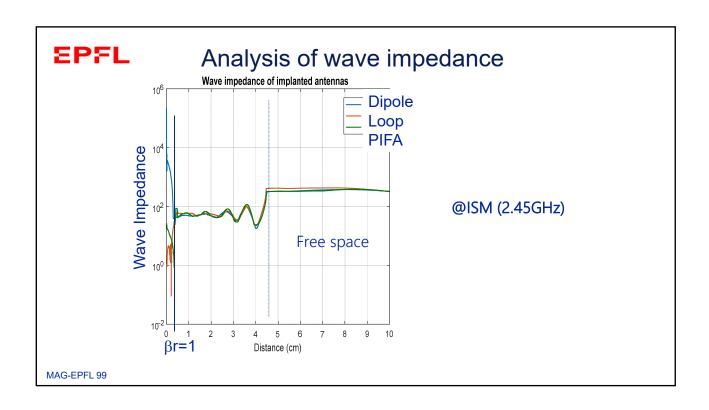

Target: - in muscle tissue (30 mm)

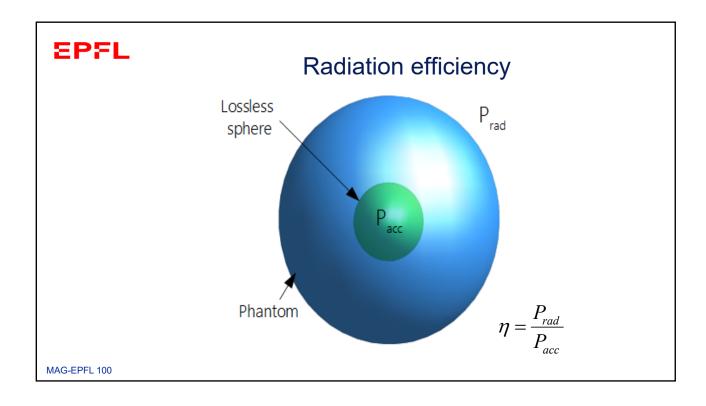
Continuous monitoring of subcutaneous temperature of a porcine animal (= pig)

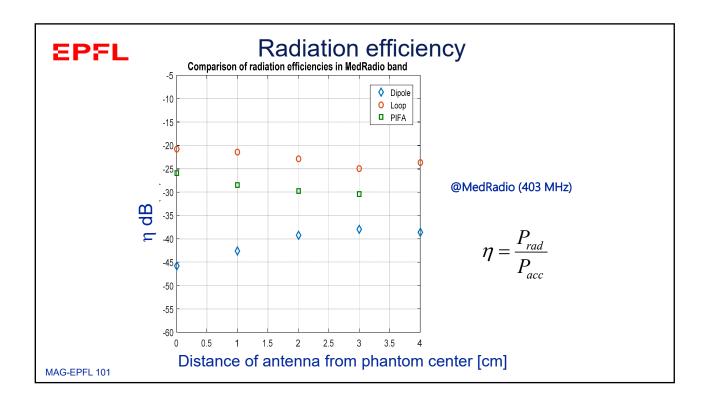

Characteristics:

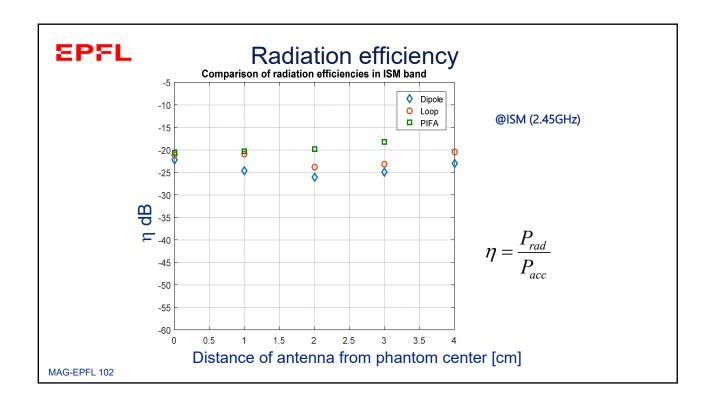

- Measurement during the implantation procedure
- Temperature check every 5 min. Complete working cycle (wake-up, measurement, transmission...) for 15 days

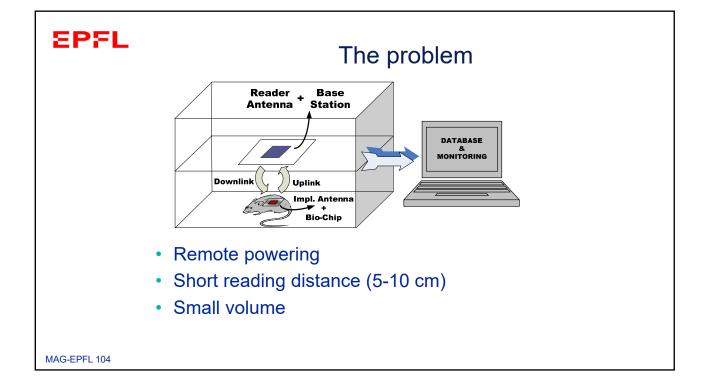

In vitro sensor for room temperature comparison Implantation in accordance to all ethical considerations and the regulatory issues related to animal experiments.

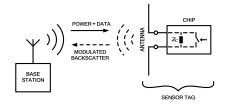



Comparison SWE with real antenna results **EPFL** Considering r_{impl} = 5mm and r_{body} = 45 mm Total radiated power (dB) -10 -20 -25 f = 2.45 GHzf = 404 MHz $\Delta = 3$ cm -30 -30 $\Delta = 3$ cm Electric dipole Electric dipole -35 -35 Magnetic dipole Magnetic dipole -40 Radial coordinate (cm) Radial coordinate (cm) Full wave simulation Full wave simulation Antenna efficiency: -32.6 dB Antenna efficiency: -20 dB In vitro measurements: In vitro measurements: Antenna efficiency: -33 dB Antenna efficiency: -21 dB MAG-EPFL 95








Remote powered antenna @ ISM 2,45 GHz Band Figure of Merit: comply to reulatory safety issues

EXAMPLE 2: ANTENNA FOR A GENERIC IMPLANTS FOR RODENTS (MICE)

The system

- ANTENNA MODEL MODULATOR RECTIFIER LOAD

 ZANT

 PANT

 Data

 Data

 C1

 M2

 RC2

 RL
- Regulation issues, Base station :
 - Max EIRP (EU RFID regulation): 27dBm
 - Max Re[S] at mouse position: 10 (50) W/m²
 - Max field level at mouse position: 87 (193) V/m
- From this we obtain the reading distance:

$$r = \sqrt{\frac{EIRP}{4\pi \operatorname{Re}[S]}} = 6cm$$

MAG-EPFL 105

EPFL

The system

We would like a re-emmited power of Pout=0.8 dBm

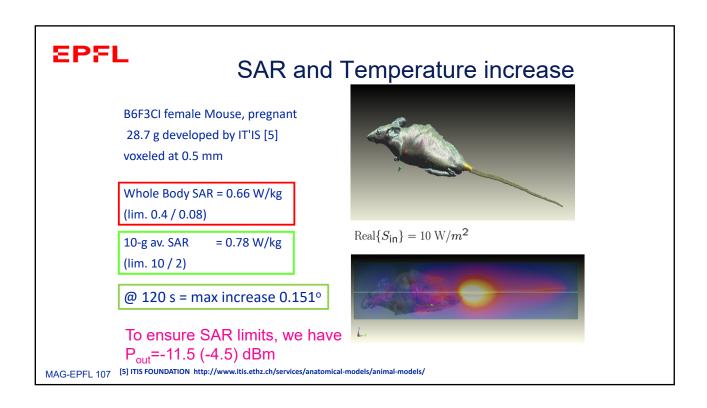
$$P_{\rm out} = {\rm Real}\{{\rm S}_{\rm in}\} \ {\lambda^2 \over 4\pi} \ {\rm G}_{\rm rx} \ \chi \ au \ \eta_{
m rect}$$

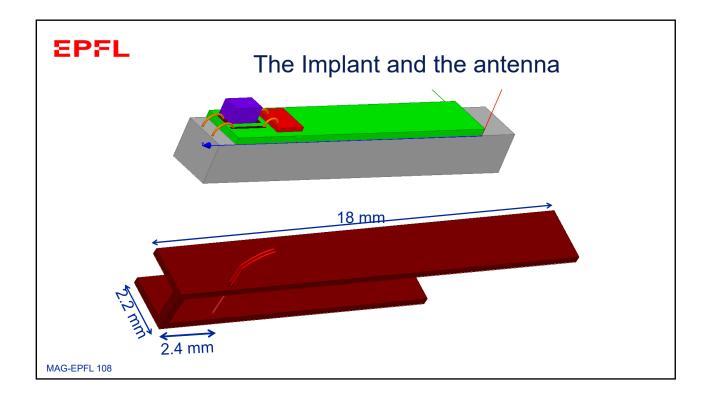
 $P_{\text{out}} = 1.2 \text{ mW (+0.8 dBm)}$

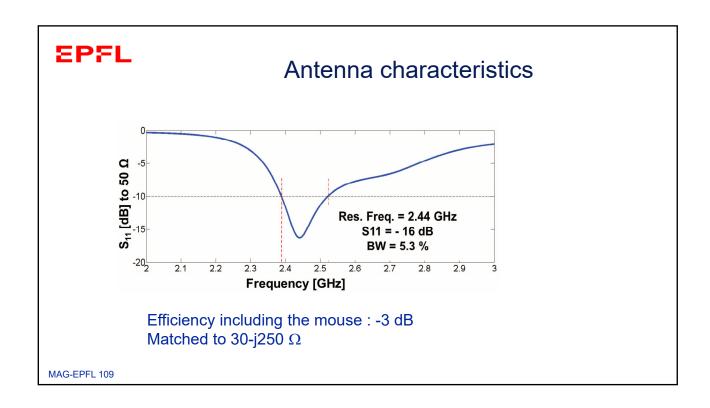
 $S_{\rm in} =$ Poynting vector at the mouse surface

 $\lambda = 12.24 \text{ cm at } 2.45 \text{ GHz}$

 $G_{\rm rx} = -1.5$ dBi gain of the implanted antenna LP (incl.body losses)

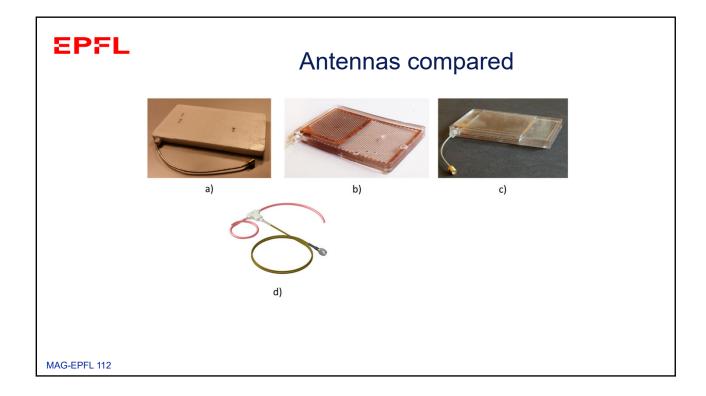

 $\chi = 0.5$ pol. mismatch (impl. antenna is LP)

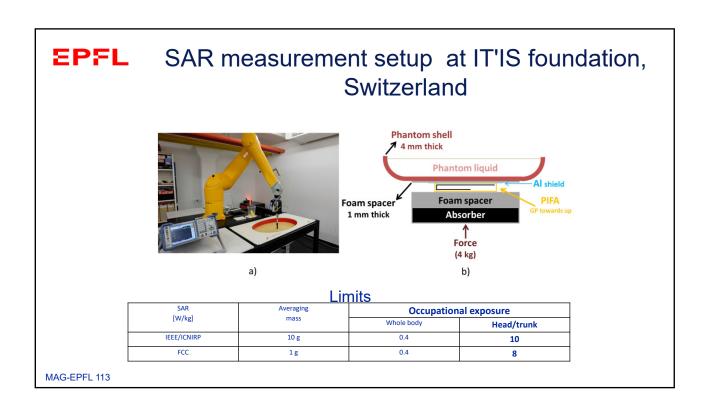

 τ = 0.7 power transmission coefficient (antenna to implant rectifier)

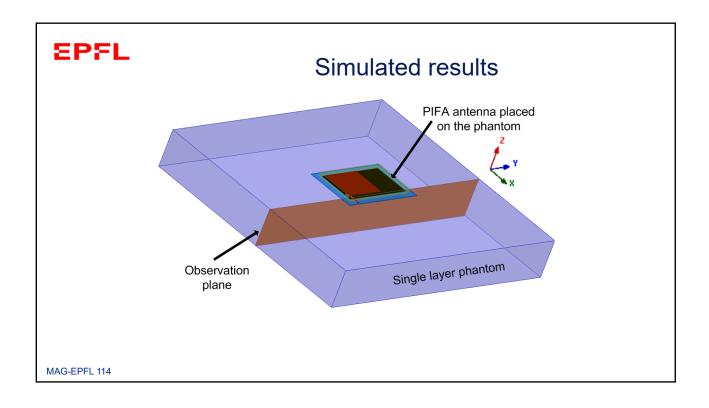

 $\eta_{\text{rect}} = 0.2 \text{ rectifier efficiency}$

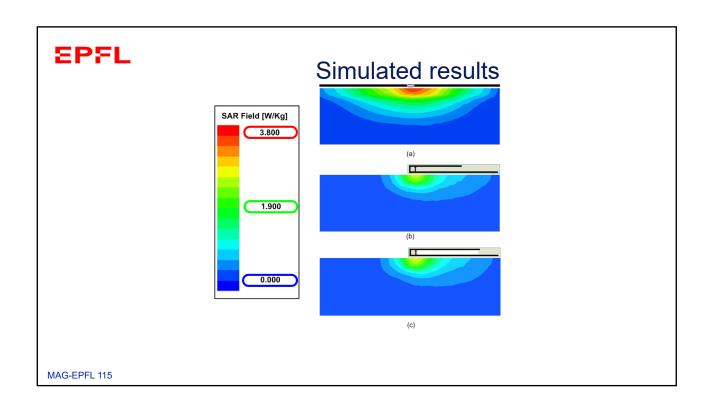
This implies $\frac{Real\{S_{III}\} - 20.36 \text{ W/m}^2}{20.36 \text{ W/m}^2}$

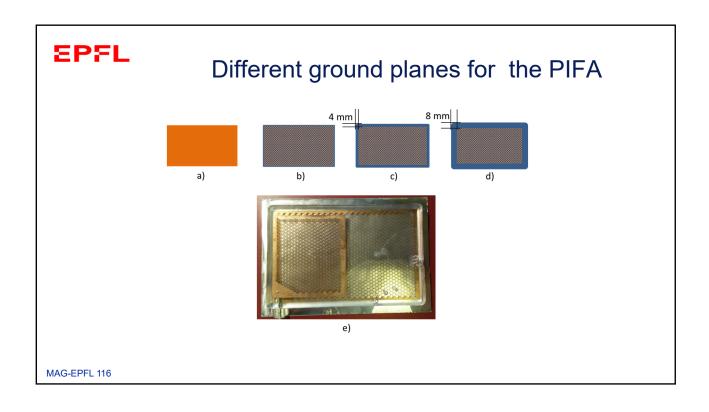
Regulatory compliant level (Real $\{S_{in}\} = 10 \text{ W/}m^2$) $\rightarrow P_{out} = 0.588 \text{ mW (-2.3 dBm)}$



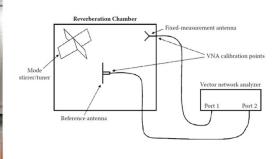

Wearable antennas


wearable antenna at 380 MHz for security communications


Figure of merit: maximize distance and robstness

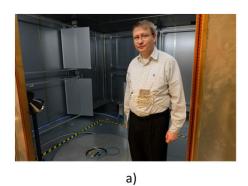

EXAMPLE: THE SAR AND EFFICIENCY OF DIFFERENT WEARABLE TETRAPOL ANTENNAS

Measured results


		IFA -solid		FA ir Gap		FA r-mesh		ole rama
Averag.	1g	10g	1g	10g	1g	10g	1g	10g
Normal	9.12	4.36	9.2	4.56	4.41	2.31	NA	7.82
<u>Double</u> <u>GP</u>	6.26	3.17	<u>7.32</u>	3.72	<u>2.71</u>	<u>1.42</u>	NA	NA
<u>Ext.</u> 4 mm	3.87	<u>1.96</u>	<u>4.77</u>	<u>2.57</u>	<u>1.6</u>	<u>0.90</u>	NA	NA
<u>Ext.</u> <u>8 mm</u>	3.18	<u>1.75</u>	3.42	<u>1.96</u>	1.09	<u>0.61</u>	NA	NA

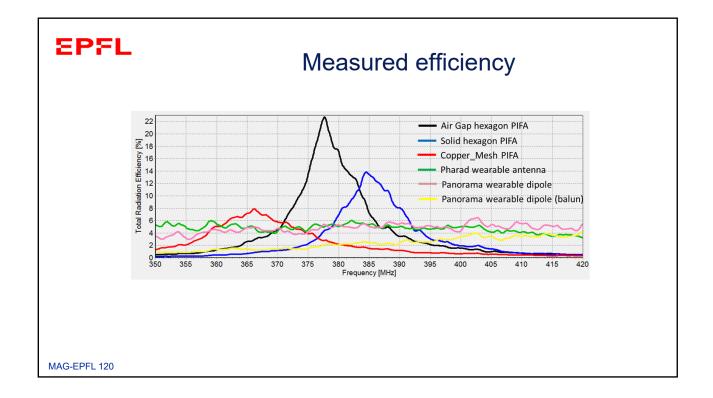
MAG-EPFL 117

Measured efficiency

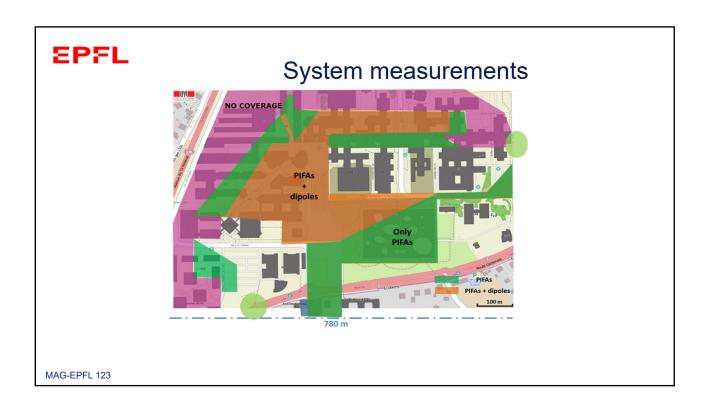


b)

done in a reverberation chamber at Bluetest

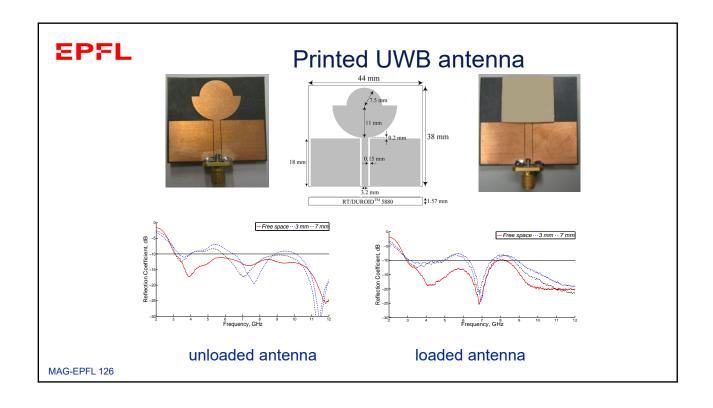

Measured efficiency

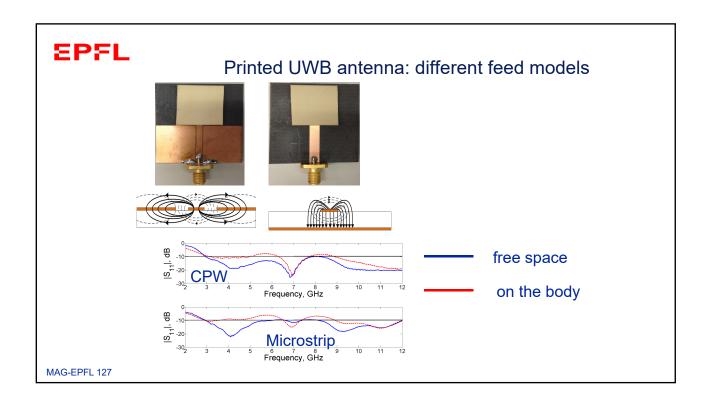
b)

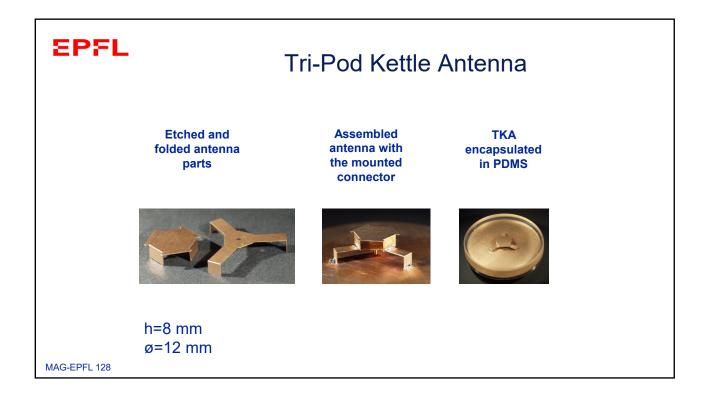

System measurements

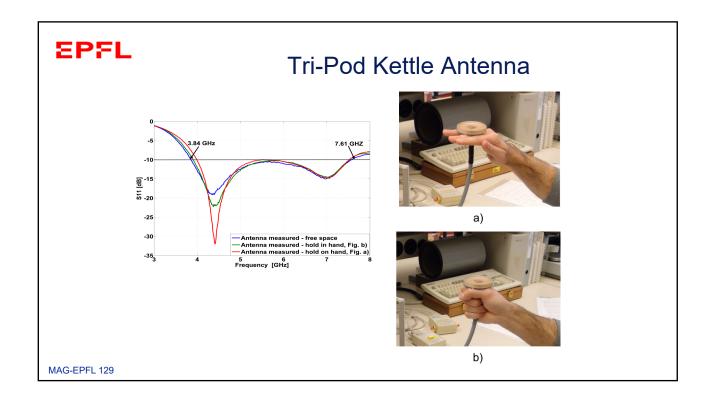
Communication system used (Courtesy of RUAG SA)

UWB


Figure of merit: low profile, minimize coupling into the body

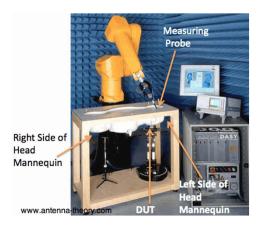

EXAMPLE 2 : THE DESIGN OF WEARABLE UWB ANTENAS FOR WBAN




How to decouple an UWB antenna from the Body?

- Use ground planes
 - possible only for polarization orthogonal to the body.
 - for flat (printed) antennas, the ground plane is used to achieve the band width => cannot be beneath the antenna
- Use dielectrics to control the near field
- · Select the right feed structure

Some legislation and rules

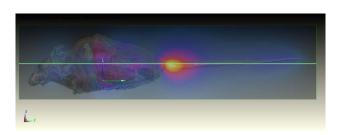

Standards and regulations

- · Standarts are set to protect our health, e.g in
 - food additives
 - air or water pollutants
 - EM field levels
 - SAR levels
 - · temperature increase
- Each country regulates its standarts
- Standarts are based on the latest sceintific knowledge: they may change

MAG-EPFL 131

EPFL

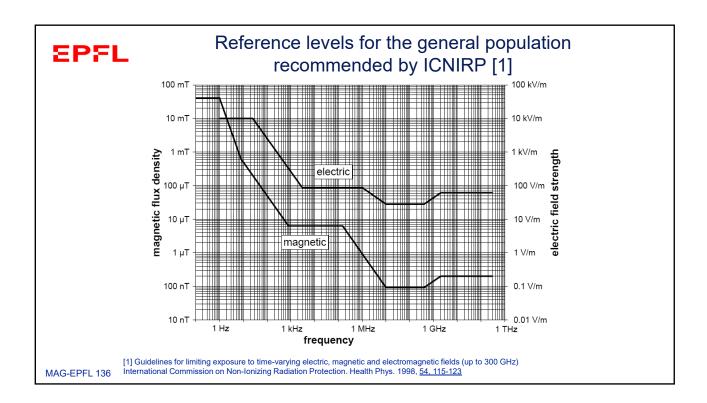
SAR measurement



DASY measurement system from SPEAG

Examples

MAG-EPFL 133


Table 1: Exposure limits for the general public for electromagnetic fields in inhabited areas in member states of the European Union and selected industrial nations outside the European Union (situation April 2011)

	50 Hz (ELF)				900 MHz (GSM)			(GSM)		2100 MHz (UN	ITS)
	electric field magnetic strength flux density		magnetic flux density	equivalent plain wave power density	electric field strength	magnetic flux density	plain wave power density	electric field strength	magnetic flux density	equivalent plain wave power density	
	(V/m)	(µT)	(V/m)	(µT)	(W/m^2)	(V/m)	(μT)	(W/m^2)	(V/m)	(µT)	(W/m ²)
Recommendation 1999/519/EC	5000	100	41	0.14	4.5	58	0.20	9	61	0.20	10
Austria	[5000]	[100]	[41]	[0.14]	[4.5]	[58]	[0.20]	[9]	[61]	[0.20]	[10]
Belgium (Flanders)	-	10	21 (1	-	-	29 ⁽¹	-	-	31 (1	-	-
Bulgaria	_ (2	_ (2	-	-	0.1	-	-	0.1	-	-	0.1
Cyprus	[5000]	[100]	41	0.14	4.5	58	0.20	9	61	0.20	10
Czech Republic	5000	100	41	0.14	4.5	58	0.20	9	61	0.20	10
Denmark	_ (3	_ (3	-	-	-	-	-	-	-	-	-
Estonia	5000	100	41	0.14	4.5	58	0.20	9	61	0.20	10
Finland	[5000]	[100]	41	0.14	4.5	58	0.20	9	61	0.20	10
France	5000 (4	100 (4	41	0.14	4.5	58	0.20	9	61	0.20	10
Germany	5000	100	41	0.14	4.5	58	0.20	9	61	0.20	10
Greece	5000	100	32 (5	0.11 (5	2.7 (5	45 (8	0.15 (5	5.4 (5	47 (5	0.16(5	6 (5
Hungary	5000	100	41	0.14	4.5	58	0.20	9	61	0.20	10
Ireland	[5000]	[100]	41	0.14	4.5	58	0.20	9	61	0.20	10
Italy	_ (6	3 %	60	0.02 0	0.10	60	0.02 0	0.10	60	0.02 0	0.10
Latvia	-	-	-	-	_	-	-	_	-	-	-
Lithuania	500 ^{(a}	-	-	-	0.1	-	-	0.1	-	-	0.1
Luxembourg	50000	100 (9	41(10	0.14	4.5	58 (10	0.2	9	61 (10	0.20	10
Malta	[5000]	[100]	41	0.14	4.5	58	0.20	9	61	0.20	10
Netherlands	_ (11	_ (11	-	-	-	_	-	-	-	-	-
Poland	1000	75	7	-	0.1	7	-	0.1	7	-	0.1
Portugal	5000	100	41	0.14	4.5	58	0.20	9	61	0.20	10
Romania	5000	100	41	0.14	4.5	58	0.20	9	61	0.20	10
Slovakia	5000	100	41	0.14	4.5	58	0.20	9	61	0.20	10

http://ec.europa.eu/health/electromagnetic_fields/docs/emf_comparision_policies_en.pdf

Main regulators

- USA:
 - FCC (Federal communication commission)
 - FDA (Food and Drug Administration)
- EU:
 - ICNIRP (International Commission on Non-Ionizing Radiation Protection)
- Switzerland:
 - BAFU (Bundesamt für Umweltschutz), published the Ordinance on Non-Ionizing Radiation (ONIR)

Regulations USA

Limits depend on frequency allocation: electrical field strength is evaluated at 3 meters Equivalent Isotropic Radiated Power $EIRP = P_{\alpha}G_{\alpha}$

Frequency	Electrical Field Strength	Corresponding EIRP
30 88 MHz	100 μV/m	– 55.2 dBm
88 216 MHz	150 μV/m	– 51.7 dBm
216 960 MHz	200 μV/m	-49.2 dBm
> 960 MHz	500 μV/m	-41.2 dBm

Almost nothing could work with that! So there are exceptions...

- [1] FCC Title 47, Part 15 (47 CFR 15) Rules and regulations regarding unlicensed transmissions
- [2] Texas instruments Application Report SWRA048–May 2005: ISM-Band and Short Range Device Regulatory Compliance Overview

MAG-EPFL 137

EPFL Regulations USA: the 2.4 -2.4835 GHz ISM band

T		Fundamental	Harmonics		
Transmission Type	E at 3m	EIRP	E at 3m	EIRP	
Frequency hopping		≥ 75 channels: +36 dBm < 75 channels: +30 dBm	20 dB below the peak in-band emission in an		
Digitally spread		+36 dBm	- 100-kHz bandwidth		
Other	50 mV/m	-0.23 dBm	500 μV/m	-41.23 dBm	

max transmitted power 1 W (+30 dBm)

[1] FCC Title 47, Part 15 (47 CFR 15) Rules and regulations regarding unlicensed transmissions [2] Texas instruments Application Report SWRA048–May 2005: ISM-Band and Short Range Device Regulatory Compliance Overview

Regulations EU

Limits depend on:

- Frequency allocations (Non-Specific Short Range Devices SRD)
- Applications

Frequency Band	ERP	Duty Cycle	Channel Bandwidth	Remarks
433.05 - 434.79 MHz	+10 dBm	<10%	No limits	No audio and voice
433.05 – 434.79 MHz	0 dBm	No limits	No limits	≤– 13 dBm/10 kHz, no audio and voice
433.05 – 434.79 MHz	+10 dBm	No limits	<25 kHz	No audio and voice
868 – 868.6 MHz	+14 dBm	< 1%	No limits	
868.7 – 869.2 MHz	+14 dBm	< 0.1%	No limits	
869.3 - 869.4 MHz	+10 dBm	No limits	< 25 kHz	Appropriate access protocol required
869.4 – 869.65 MHz	+27 dBm	< 10%	< 25 kHz	Channels may be combined to one high speed channel
869.7 -870 MHz	+7 dBm	No limits	No limits	
2400 - 2483.5 MHz	+7.85 dBm	No limits	No limits	Transmit power limit is 10-dBm EIRP

[2] Texas instruments Application Report SWRA048–May 2005: ISM-Band and Short Range Device Regulatory Compliance Overview
[3] ERC RECOMMENDATION 70-03 RELATING TO THE USE OF SHORT RANGE DEVICES (SRD) 2011

MAG-EPFL 139

Regulations EU (RFID)

Frequency Band	Power	Spectrum access and mitigation requirement	Channel spacing	ECC/ERC Decision	Notes
a1 2446-2454 MHz	≤500 mW e.i.r.p.	No requirement	No spacing		
a2 2446-2454 MHz	>500 mW-4 W e.i.r.p	≤ 15% duty cycle FHSS techniques should be used	No spacing		Power levels above 500 mW are restricted to be used inside the boundaries of a building and the dutty cycle of all transmissions shall in this case be \(\leq 15 \% \) in any 200 ms period (30 ms on /170 ms off).
b1 865.0-865.6 MHz	100 mW e.r.p.	No requirement	200 kHz		
b2 865.6-867.6 MHz	2 W e.r.p.	No requirement	200 kHz		
b3 867.6-868.0 MHz	500 mW e.r.p.	No requirement	200 kHz		

duty cycle? Spread spectrum? Indoor/outdoor? Because otherwise we should not transmit more than 500 mW (+27 dBm)...

[2] Texas instruments Application Report SWRA048–May 2005: ISM-Band and Short Range Device Regulatory Compliance Overview

[3] ERC RECOMMENDATION 70-03 RELATING TO THE USE OF SHORT RANGE DEVICES (SRD) 2011

Regulation ISM band summary

- We can transmit up to EIRP = 4 W (+36 dBm) in both the USA and EU if
 - Tx < 15% Duty cycle
 - Spread spectrum (more than 75 channels or digital)
- We can transmit up to EIRP = 1 W (+30 dBm) in the USA if
 - Spread spectrum (less than 75 channels or digital)
- We can always transmit up to EIRP = 0.5 W (+27 dBm) in the EU
- We can always transmit up to EIRP = 0.00095 W (-0.23 dBm, |E|=50 mV/m) in the USA

MAG-EPFL 141

EPFL

Regulations on SAR

Table 3: ICNIRP SAR limits (100 kHz - 10 GHz)

	Whole-body average SAR (W/kg)	Localized SAR (Head and Trunk) (W/kg)	Localized SAR (Limbs) (W/kg)
Occupational Exposure	0.4	10	20
General Public Exposure	0.08	2	4

- All SAR limits are to be averaged over any six-minute period.

 Localized SAR averaging mass is any 10 g of contiguous tissues; the maximum SAR so obtained should be the value used for the estimation of exposure.

Table 4: ANSI/IEEE SAR limits (100 kHz - 6 GHz)

	Whole-body average SAR (W/kg)	Localized SAR (Head and Trunk) (W/kg)	Localized SAR (Limbs) (W/kg)
Occupational Exposure	0.4	8	20
General Public Exposure	0.08	1.6	4

- For occupational exposure, the SAR limits are averaged over any six-minute interval.
 For general public exposure, the averaging time for SAR limits varies from six minutes to 30 minutes.
- Whole-body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 g of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 g of tissue defined as a tissue volume in the shape of a cube.

MAG-EPFL 142 https://arquivo.splat-n.com/engineering/comparison-of-radio-frequency/

Measurement

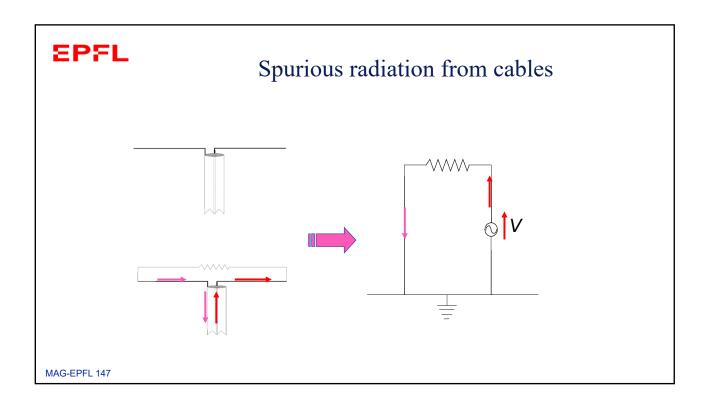
MAG-EPFL 143

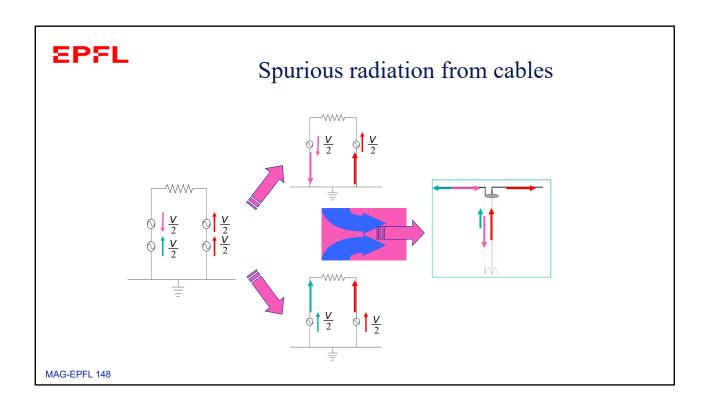
EPFL

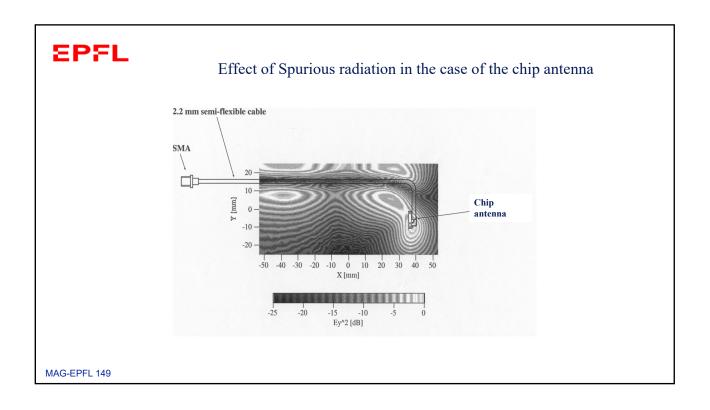
Outline

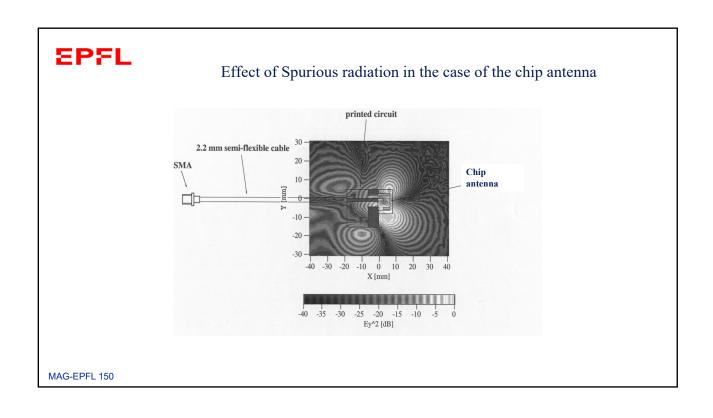
- What is the problem
- Baluns
- Wheeler cap method
- System measurements
 - Reverberation chamber
 - Anechoic chamber

relevant characteristics


- bandwidth
- max gain
- radiation efficiency


MAG-EPFL 145


EPFL


What is the problem?

- Commercial DECT antenna:
 - Ceramic chip, 6 x 9 x 1.8 mm
 - Gain of 2.2dBi at 1.89 GHz
 - Max Gain after Harrington: -3.3 dBi!!
 - Gain measured at LEMA : -8 ± 2 dBi
- The discrepancy is due to measurement errors

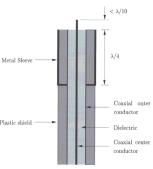
Effects on radiation characteristics

- Unwanted radiation in unwanted directions
- Increase of measured gain up to 10 dB
- Destruction of both polarization and radiation pattern

MAG-EPFL 151

EPFL

Measurement solutions


- Baluns
- Wheeler cap method
- System measurement methods
 - reverberation chamber
 - anechoic chamber

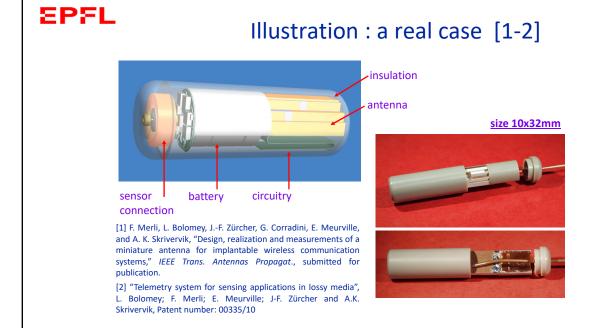
Baluns

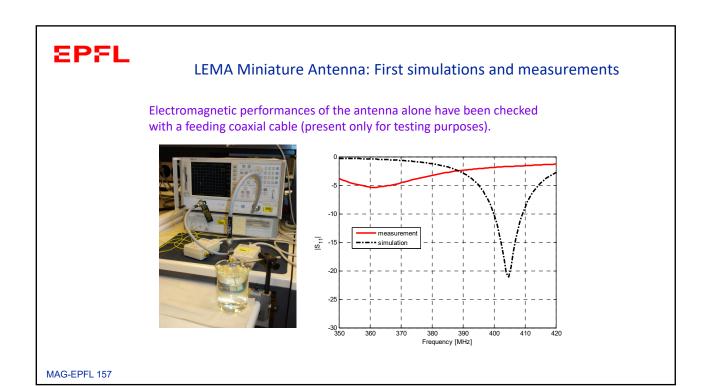
The spurious radiation can be attenuated using for instance ferrite cores, chockes or baluns.

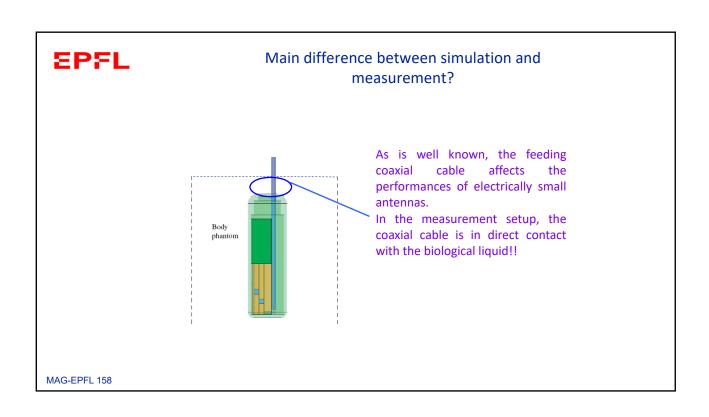
MAG-EPFL 153

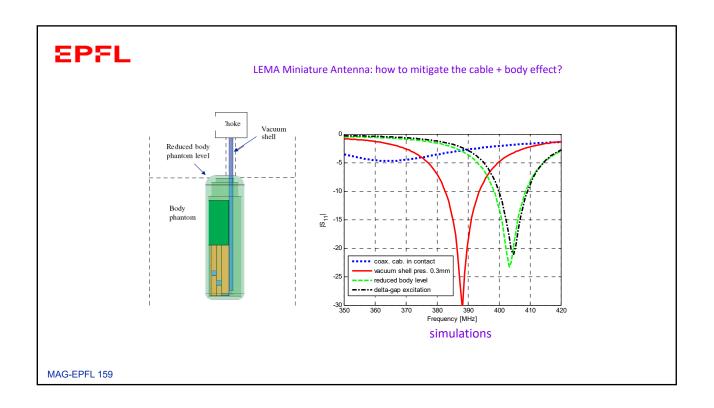
EPFL

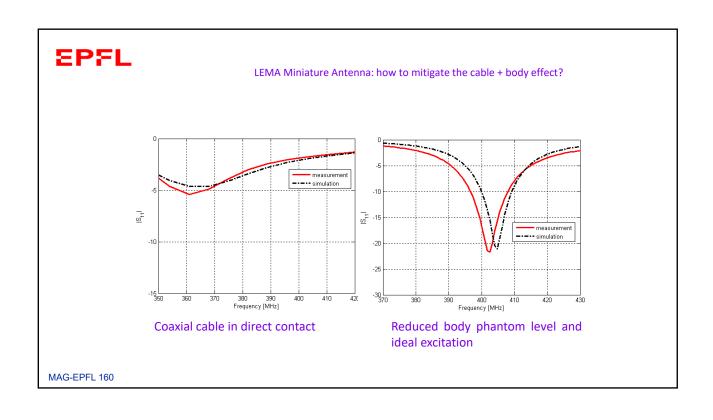
Baluns


- Advantage:
 - good for both circuit and radiation measurements
- Disadvantages:
 - · mostly narrow-band
 - cumbersome for the characterization of multi-band antennas




Measurement issues


- ESA are difficult to characterize as they do not have a proper port
- In certain cases, they cannot be measured as the connection to the cable modifies severely their characteristics
- In case of implantable antennas, the problem is worse due to the lossy environment. This is an old problem known from microwave hyperthermia.
- But it is important to characterize the antenna before implanting the system !!!
- F. Merli and A.K.Skrivervik, Design and Measurement Considerations for Implantable Antennas for Telemetry Applications, EUCAP 2010, Barcelona

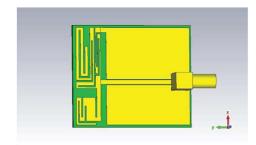

MAG-EPFL 155

Some issues with the correct definition of the excitations and loads in full-wave simulations

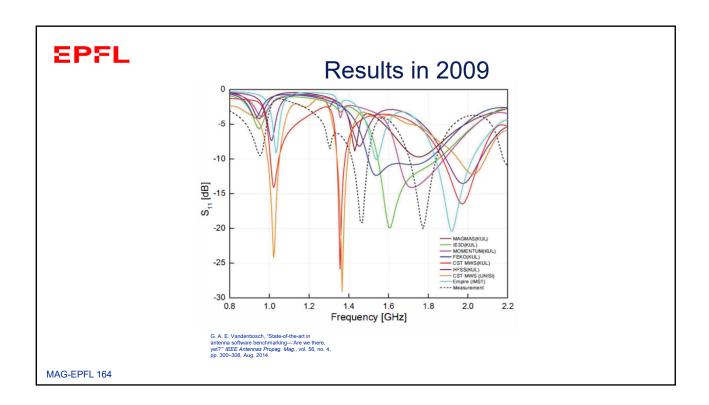
Anja Skrivervik, Microwave and Antenna Group, Ecole Polytechnique Fédérale de Lausanne, Switzerland

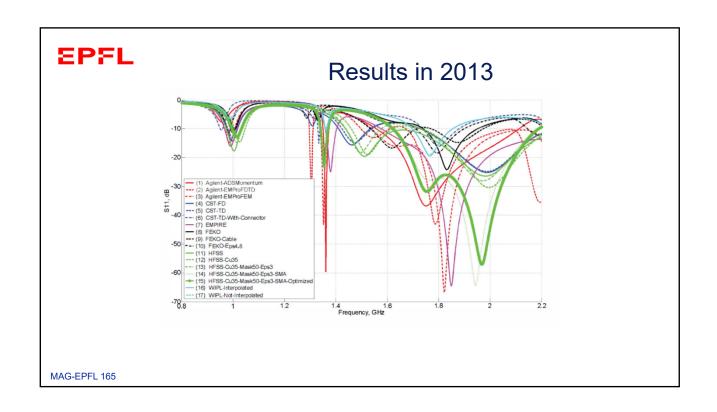
MAG-EPFL 161

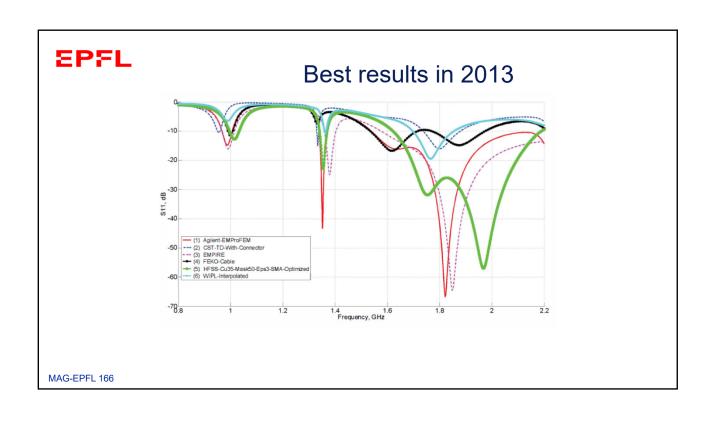
EPFL

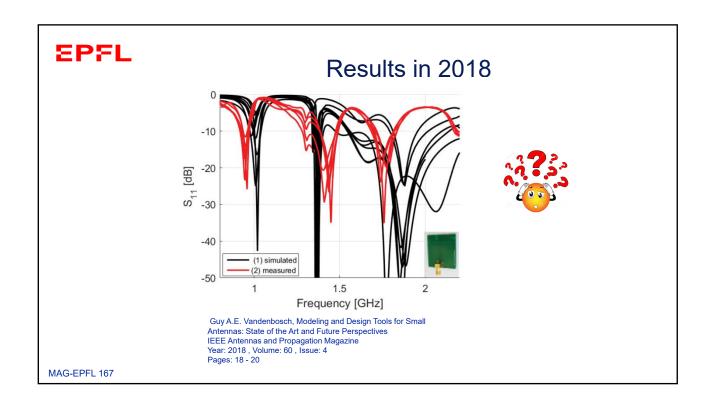

Outline

- An example
- Some definitions
- Classification of Full Wave simulation methods
- Numerical excitation of a simulated problem versus physical excitation of a component or device
 - FDTD (FEM)
 - IE + MoM
- Examples

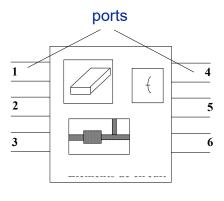

What is the problem: an old benchmark



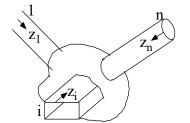



G. A. E. Vandenbosch, "State-of-the-art in antenna software benchmarking—'Are we there, yet?" *IEEE Antennas Propag. Mag.*, vol. 56, no. 4, pp. 300–308 Aug. 2014

Benchmark first proposed in the ACE Network of excellence WG On numerical simulation, continued by the EurAAP WG on numerical simulation



Some definitions

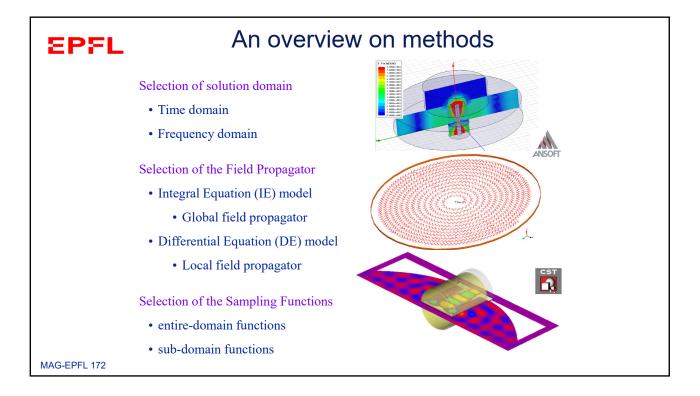

Microwave component

Circuit elements

MAG-EPFL 169

EPFL

Reference planes


On each access line i of a component, a coordinate axis z_i is defined. The origin of this axis lies in the reference plane of the port i.

Assumptions:

- •The transmission lines are lossless
- •They support only the dominant mode or any other single mode. If several modes can propagate, we will need to define one port per mode
- •The reference plane is distant enough from discontinuities to ensure that the none relevant modes are attenuated

Intermediate findings

- · A port is a well defined circuit element
- In microwaves, circuits are defined between ports
- However, elements can be interconnected by just using wires or soldering them together
- Micorwave measurements can be done at ports only
- What about numerical simulations ???

Solution domain

Time domain

Frequency domain

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$
$$\nabla \cdot \mathbf{D} = \rho$$
$$\nabla \cdot \mathbf{B} = \mathbf{0}$$

$$\nabla \times \mathbf{E} = -j\omega \mathbf{B}$$
$$\nabla \times \mathbf{H} = j\omega \mathbf{D} + \mathbf{J}$$
$$\nabla \cdot \mathbf{D} = \rho$$
$$\nabla \cdot \mathbf{B} = \mathbf{0}$$

MAG-EPFL 173

EPFL

Field Propagator

- Local
- An unknown (usually E and H) interacts only with its closest neighbours
- Global
- All unknowns interact with each other

Example of local field propagator: 1-D FDTD

Consider the 1-d wave equation $\frac{\partial^2 u(x,t)}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u(x,t)}{\partial t^2}$

For the simulation domain $0 \le x \le d$

with

$$x_{m} = (m-1)\Delta x$$

$$\Delta x = \frac{d}{M-1}$$

$$t_{n} = (n-1)\Delta t$$

$$u_{m}^{n} = u(x_{m}, t_{n}) = u \lceil (m-1)\Delta x, (n-t)\Delta t \rceil$$

MAG-EPFL 175

EPFL

Example of local field propagator: 1-D FDTD

We need to find the numerical expression for the derivatives:

$$\frac{\partial^2 u(x,t)}{\partial x^2} \simeq \frac{\partial}{x} \left[\frac{u(x + \Delta x/2,t) - u(x - \Delta x/2,t)}{\Delta x} \right]$$

$$\simeq \frac{u(x + \Delta x,t) - 2u(x,t) + u(x - \Delta x,t)}{(\Delta x)^2}$$

$$\frac{\partial^2 u(x,t)}{\partial x^2} \simeq \frac{\partial^2 u(x,t)}{\partial x^2} = \frac{$$

$$\frac{\partial^{2} u(x,t)}{\partial t^{2}} \simeq \frac{\partial}{t} \left[\frac{u(x,t + \Delta t/2) - u(x,t - \Delta t/2)}{\Delta t} \right]$$
$$\simeq \frac{u(x,t + \Delta t) - 2u(x,t) + u(x,t - \Delta t)}{(\Delta t)^{2}}$$

Example of local field propagator: 1-D FDTD

With: $r = \frac{c\Delta t}{\Delta x}$ we write

$$r^{2}\left[u(x+\Delta x,t)-2u(x,t)+u(x-\Delta x,t)\right] = \left[u(x,t+\Delta t)-2u(x,t)+u(x,t-\Delta t)\right]$$

Which can be written as

$$r^{2}\left(u_{m+1}^{n}-2u_{m}^{n}+u_{m-1}^{n}\right)=u_{m}^{n+1}-2u_{m}^{n}+u_{m}^{n-1}$$
$$u_{m}^{n+1}=r^{2}\left(u_{m+1}^{n}-2u_{m}^{n}+u_{m-1}^{n}\right)+2u_{m}^{n}-u_{m}^{n-1}$$

Each unknown interacts only With its neighbours

MAG-EPFL 177

EPFL

Initial and boundary conditions

Initial condition in time: required for two time steps u_m^1 and u_m^2

Often, we take $u_m^1 = 0$, $u_m^2 = 0$

 x_1 and x_M

Boundary conditions in space, required at

Dirichlet BC: $u(0,t) = u_1^n = 0$

 $u(d,t) = u_M^n = 0$

Neumann BC: $u_1^n = u_2^n$

 $u_M^n = u_{M-1}^n$

Sources: hard sources

A hard source sets the value of a field at one or more grid points equal to a specific function of time and is thus a type of Dirichlet BC.

An issue with hard sources is that wave propagating towards them are reflected by them, which can cause modeling errors. A solution is to remove the source after launching the incident wave but before reflections arrive at the source location.

MAG-EPFL 179

EPFL

Sources: soft sources

A soft source corresponds to a forcing solution added to the wave equations, for EM problems an impressed electric current. The equation is thus modified as follows:

1. $\partial^2 \mathbf{E}$ 2.

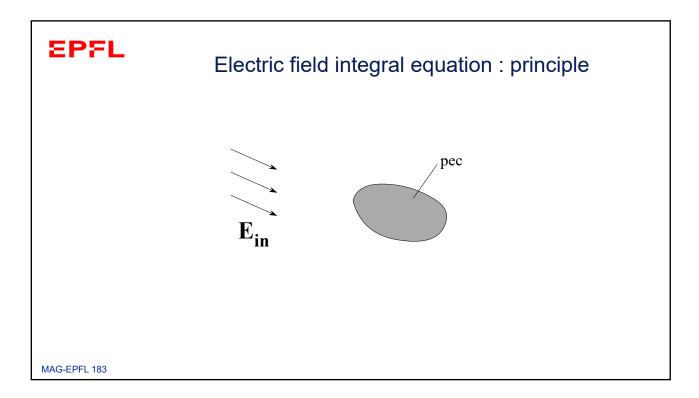
 $\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = \mu \frac{\partial \mathbf{J}}{\partial t}$

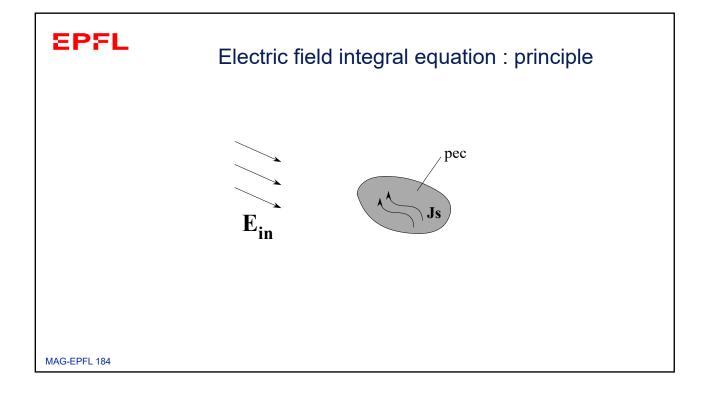
In 1D it becomes

$$\frac{\partial^2 u(x,t)}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u(x,t)}{\partial t^2} = \mu \frac{\partial J(x,t)}{\partial t}$$

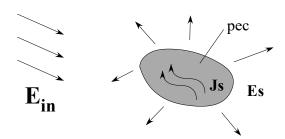
Which can be written as

$$u_{m}^{n+1} = r^{2} \left(u_{m+1}^{n} - 2u_{m}^{n} + u_{m-1}^{n} \right) + 2u_{m}^{n} - u_{m}^{n-1} - c^{2} \left(\Delta t \right)^{2} \mu \frac{\partial J(x_{m}, t)}{\partial t} \bigg|_{t=t_{n}}$$


Finite element methods


- Very rigorous, as based on function and functional analysis
- More rigorous than FDTD
- · Can be used to solve any Partial differential equations
- Can take many forms
- · Can be applied in time or frequency domain
- The mathematical source in the simulator is far from a physical source at a port!!!
- This problem is common to all simulators with local propagators

MAG-EPFL 181


EPFL

Example of global field propagator: Electric Field Integral equation + Method of Moments

Electric field integral equation : principle

The electric field has to be normal to the body in pec:

$$\mathbf{n} \times \mathbf{E}_{in} + \mathbf{n} \times \mathbf{E}_{s} = 0$$
 on the pec

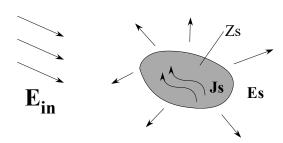
MAG-EPFL 185

EPFL

Electric field integral equation

$$\boldsymbol{E}_{s} = \overline{\boldsymbol{G}}_{EJ} \otimes \boldsymbol{J}_{s}$$

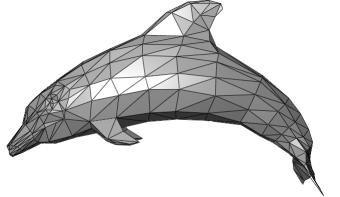
where $\overline{\overline{G}}_{EJ}$ is the Green's function (field of point sources) for the electric field and


$$G \otimes f = \int_{\text{sources}} G(\mathbf{r}|\mathbf{r}') f(\mathbf{r}') dv'$$

and finally:

$$n \times E_{in} - n \times \overline{G}_{EJ} \otimes J_s = 0$$
 EFIE

Electric field integral equation

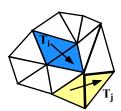


$$m{n} imes m{E}_{in} - m{n} imes m{G}_{EJ} \otimes m{J}_s = Z_S m{J}_s$$
 Leontovich impedance condition

MAG-EPFL 187

EPFL

Method of Moments
Let us consider a MoM using subsectionnal basis functions and a Galerkin testing procedure



The unknown current is expressed as a sum of basis functions

Method of Moments

The unknown current is expressed as a sum of basis functions

$$\mathbf{J}_{s} = \sum_{i=1}^{N} \alpha_{i} \mathbf{T}_{i}$$

$$\mathbf{n} \times \mathbf{E}_{in} - \mathbf{n} \times \overset{=}{\mathbf{G}}_{EJ} \otimes \mathbf{J}_{s} = \mathbf{0}$$

$$\mathbf{n} \times \mathbf{E}_{in} = \mathbf{n} \times \overset{=}{\mathbf{G}}_{EJ} \otimes \sum_{i=1}^{N} i_{i} \mathbf{J}_{s}$$

Galerkin testing procedure

$$Z_{ij} = \int_{s_i} T_i(\boldsymbol{\rho}) ds_i \int_{s'_j}^{\overline{\overline{G}}} \overline{G}_{EJ}(\boldsymbol{\rho} | \boldsymbol{\rho'}) \cdot T_j(\boldsymbol{\rho'}) ds'_i \qquad [i] = [Z]^{-1}[U]$$

$$u_i = \int_{s_i} T_i(\boldsymbol{\rho}) (\boldsymbol{n} \times \boldsymbol{E}_{in}) ds_i \qquad \text{Mathematical source,}$$

$$physically a voltage!!$$

MAG-EPFL 189

EPFL

Popular Commercial softwares

- Time domain
 - Finite Difference Time Domain (FDTD)
 - · Discretization of space (3-D) and time
 - · Requests absorbing boundary conditions
 - · Local field propagator
 - · Unknowns E and H fields
 - Mathematical excitation is a time pulse in a specific cell.
 - Physical feeds are defined as special functions (for instance transmission line modes in waveguides or cables)

Popular Commercial softwares

- Frequency domain
 - Finite Element Method (FEM)
 - Volume discretization of space (3-D)
 - · Requests absorbing boundary conditions
 - · Local field propagator
 - Unknowns E and H fields
 - · Mathematical excitation is a field in a cell.
 - Physical feeds are defined as special functions (for instance as transmission line modes)

MAG-EPFL 191

EPFL

Popular Commercial softwares

- Integral Equation + Method of Moment (MoM)
 - Surface discretization of conducting surfaces (2-D)
 - · Global field propagator
 - · Unknowns are surface currents
 - Mathematical excitation is a current or voltage in a cell
 - · Great flexibility in the feed definition
 - Good compatibility with circuit simulators
 - · Limited treatment of inhomogeneous problems

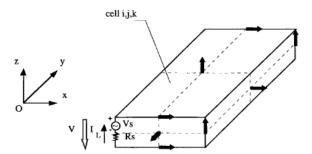
How are excitations and lumped loads specified in commercial tools?

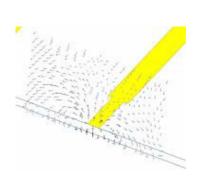
- FEM or FDTD
- IE+MoM

MAG-EPFL 193

EPFL

Modeling issues : Example of FDTD cell




Fig. 1. Standard Yee cell with a lumped resistive voltage generator.

Mathematical excitation in FEM (similar but

The port excitation is pre-computed: Wave ports or lumped ports

Wave ports example: a microstrip line

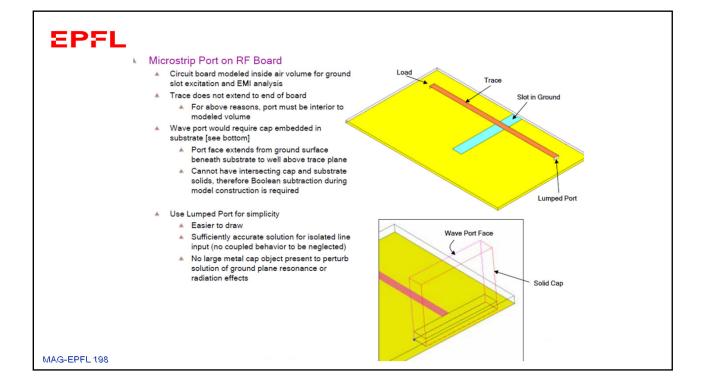
Wave port: the modes are solved In the plane transverse to the port Wave ports solve for characteristic impedance and propagation constants at the port cross-section

An infinite long transmission line is assumed At the port. It is assumed to support only one Mode. This mode is resolved, and used as excitation f or the initial problem

We have a port in the circuit sense

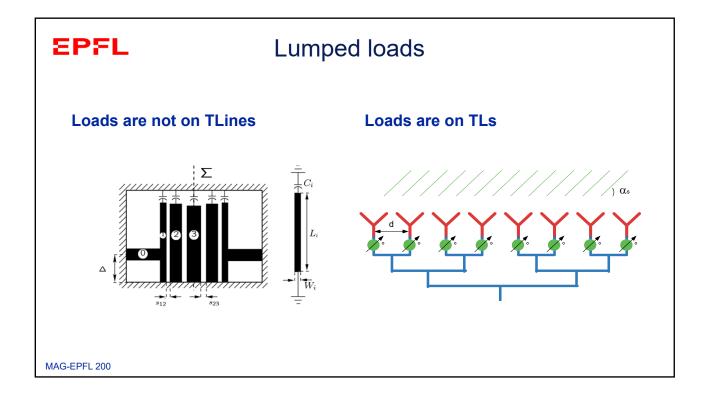
MAG-EPFL 195

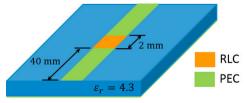
EPFL


Lumped ports

- Lumped ports excite a simplified, single-mode field excitation assuming a user-supplied Zo for S-parameter referencing
- A Terminal line may still be defined, but only one per port.
- Impedance and Propagation constants are not computed
- Port boundaries are simplified to support simple uniform field distributions.
- Edges touching perfect_E or finite conductivity faces, such as ground planes and traces, take on the same definition for the port computation
- Edges not touching conductors become perfect_H edges for the port computation
- This is different than the assumption made by Wave ports!!
- Impedance and Calibration line assignments are required for Lumped port assignments

Wave ports versus lumped ports


- · Wave Ports are more Rigorous
 - True modal field distribution solution
 - · Multiple mode, multiple terminal support
 - Use Wave ports by preference if there are no specific reasons their usage would be discouraged
- · Port Spacing may force Selection
 - Widely spaced individual excitations usually permit Wave ports
 - Closer-spaced, yet still individual excitations may require Lumped ports
 - Closely-spaced, coupled excitations require Wave ports
 - Only Wave Ports handle multiple modes, multiple terminals.
- Port Location may force Selection
 - Wave ports are best on model exterior surface; interior use requires cap
 - · Lumped ports are best for internal excitations, where caps would provide undue disruption to modeled geometry and fields
 - Wave Ports permit de-embedding to remove excess uniform input transmission lengths
 - Lumped Ports cannot be de-embedded to remove or add uniform input transmission lengths
- · Transmission Line and Solution Frequency may force Selection
 - Lumped Ports support only uniform field distributions
 - · Only Wave Ports solve for TE mode distributions, TM mode distributions, or multiple modes in same location
 - Most non-TEM excitations will require Wave Ports


Excitations and Ports in IE+MoM

- The unknown is the surface or volume current
- - The mathematical source is a volage
- - thus no problem

Lumped loads not on TLs (not linked to ports)

 For FDTD and FEM, they are represented by surfaces, and a new complete simulations will have to be made for each change of load

https://apps.lumerical.com/rf_pcb_microstrip_rlc.html

MAG-EPFL 201

EPFL

Lumped loads are not on TLs (not linked to ports)

After discretization of the integral equation and projection on the test function, we obtain :

For IE+MoM, some time can be saved (in theory)

$$\begin{split} & \big[Z \big] \big[I \big] = \big[V_{ex} \big] \\ & \big[Z_{mom} \big] \big[I \big] + \big[Z_{load} \big] \big[I \big] = \big[V_{ex} \big] \\ \end{split}$$

[Zload] is a diagonal matrix containing the load impedances

 $\left[Z_{MoM}\right]$ Needs to be computed only once

Summary

- The largest source of mistakes or discrepancy in EM numerical modelling is due to the handling of the ports.
- A port is defined on a guiding structure
- It is difficult to handle lumped elements in EM simulators
- The user needs to be careful!