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Outline

• What is the problem

• Electrically Small Antennas

• Antennas in Lossy media (implants and wearables)

• Some regulations

• Some simulation issues
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Global wireless network
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Example of W-BAN Networks

In Body On Body Off Body

Implanted

wearable

free space
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Why are antennas important for wireless 
powering

• Saving power is crucial

• Parts of systems (typically sensors) can be small

• Wireless powering can take place in or on a lossy medium 
(body)

• The difference between a good or bad antenna design can 
make differences of up to 10 dB in power efficiency of the 
system
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What is an antenna
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What is an antenna ?

• An antenna transforms a guided wave to a 
radiated wave

• An antenna is a link between Krichhoff’s 
world (circuit) and Maxwell’s world (fields)

• An antenna is a spatial filter and a spectral 
filter

• An antenna is a one port device
• An antenna is a two port device
• An antenna is part of a system
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Circuit characteristics

• Frequency response of the antenna (antenna 
bandwidth)

• Input impedance of the antenna

• Reflection coefficient of the antenna

Can be measured using S parameter measurements or
Power measurements
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Field characteristics

• Radiation pattern

• Directivity

• Gain 

• Polarization

• Radiation efficiency

Characterizing those features imply the 
measurement of an attenuation coefficient
(transfer function). They need to be characterized
in an anechoic chamber or an outdoor range
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Cases where antenna size is important

• Sensor telemetry (electrically small)

• Implants and wearables 
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What is an electrically small antenna ?
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1st boom of ESAs: the old radio days

http://dspt.club.fr/Poldhu.htm

f : 312 kHz =>  = 961m

Tip : for good ideas look in old radio-amateur publications
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The crazy1990s
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The new millenium: IoT and IoE

https://www.elprocus.com/introduction-to-wireless-sensor-networks-types-and-applications/
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Today: worn and implanted sensors

http://orthogonal.io/medical-softtware/wearable-sensors-
are-the-future-of-personalized-medicine-html/

https://openi.nlm.nih.gov/detailedresult.php?img
=PMC4367357_sensors-15-03236f4&req=4

https://www.researchgate.net/figure/Three-types-of-wearable-
sensor-nodes-powered-by-thermoelectric-energy-harvesters-The_fig1

https://medicalxpress.com
Implantable sensor
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Application example

The frog is the ground plane



Why do we need them ?

Physical bounds
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• Provide a limitation to the antenna characteristics

• Are usually hard to reach

• Can be used as benchmarks to assess designs

• Are extremely useful to the system and design engineers to 
assess feasibility

• Bounds are existing for classic ESAs

• Classic bounds for ESAs were introduced 70 years ago and 
were based on Spherical Wave Expansions

• Research on bounds for implantable antennas has just started. 
Can we use SWE to gain insight in implantable antenna 
characteristics ?

Physical bounds of antennas
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• L.J. Chu, "Physical limitations on omni-directional antennas", Journal of Applied Physics,. 
19, 1948, pp. 1163-1175.

• R.F. Harrington, "On the Gain and Beamwidth of Directional Antennas", IRE Transactions 
on Antennas and Propagation, vol. AP-6, 1958, pp. 219-225.

Two classic uses of spherical wave expansions: 
Limits on quality factor and gain
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Bandwidth and quality factor

• No exact link between bandwidth and quality factor (antenna 
modelisation by lumped RLC circuit is approximate)

• For a second order lumped series RLC circuit, the half power 
bandwidth is given by :

upper lower

centre

1f f

f Q


 valid for Q >>1
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Q of an antenna (linear polarization case)

• circuit approximation

• spherical wave expansion

MAG-EPFL 22

Minimum quality factor

The antenna is approximated by a RLC circuit; and at resonance:

If the circuit is matched by a lossless network:

and
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Minimum quality factor

• The antenna is enclosed in the smallest possible sphere.

• The fields are represented by spherical waves functions.

• Chu: Equivalent ladder network (approximation).
• L.J. Chu, Journal of Appl. Physics, vol. 19, pp. 1163-1175, 1948

• McLean: Directly from the fields.
• J.S. Mc Lean, IEEE Trans on AP, vol. AP-44, pp. 672-675, 1996

Main problem:  Evaluation of the energy stored in the reactive 
field.
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Chu's method

• Enclose the antenna in the smallest possible sphere (radius a)
• The fields external to the sphere are represented by a weighted sum of spherical 

functions. These mode are orthogonal, and carry thus power independently from each 
other

• Q is computed in terms of the time average non propagating energy external to the 
sphere, and of the radiated power. The energy stored inside the sphere would increase 
the Q

• The computation is difficult, because :
• the total time-average stored energy outside the sphere is infinite, as for any propagating 

wave
• A technique to separate the non propagation energy from the total energy is needed. We 

cannot simply use the near field components (E and H) because the energy is non-linear
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Chu's method

a

dipole antenna
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Chu's method (linear polarization)

• Compute the wave impedance of the modes 

• Use the modified Hankel functions
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Chu's method (linear polarization)

• Use the recurrence formulas for modified Hankel functions

• Which can be re-arranged into
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Chu's method (linear polarization)

• Finally



MAG-EPFL 29

Chu's method (linear polarization)

• Thus

• This is the transfer function of a Cauer network
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Example : TM01 mode only
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Example : TM01 mode only



MAG-EPFL 33

Example : TM01 mode only

Finally :

Theoretical minmum Q for an antenna exciting the TM01 mode 
only
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Antenna exciting two modes

Q2 is always larger than Q1
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Higher order mode approximation

• Too complicated for many modes (difficult to compute the 
energy stored in each capacitor and inductor of the ladder). 
We use an approximate equivalent circuit for each mode
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Higher order mode approximation

• Result for TM01 mode

• Exact solution 
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Lowest possible Q for linearly polarized antennas
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Chu’s method : TE modes
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Chu’s method : TE modes
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Chu’s method

• Linear polarization antenna : Either TE or TM mode

• Circular polarization : combination of TE and TM modes with 
the proper phase shift

 3min

11

kaka
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The field method: TM case (e.g. dipole)
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Example : TM01 mode only

Finally :

Theoretical minmum Q for an antenna exciting the TM01 mode 
Only
k is the wavenumber
A the radius of the sphere enclosing the antenna

3
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Q in presence of losses
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Maximum gain of an antenna

• The gain is defined as

• Where Sr is the r component of the Poynting vector and Pf is 
the total radiated power, obtained integrating Sr over a large 
sphere
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Maximum gain of an antenna : intuitive approach

Parabolic dish

d
incoming plane wave
Power density : p

P
received
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Preceived
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Maximum gain of an antenna

• Spherical wave functions are obtained by solving Helmoltz’ equation in spherical 
coordinated. The fields radiated by an antenna oriented so that the maximum is at 
 and =0 is given by :

Harrington, IRE Trans on AP, vol. AP-6, pp. 219-225, 1958
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Maximum gain of an antenna

• The radiated field is obtained when r is large, thus

• Which is equivalent to
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Maximum gain of an antenna

• The radiated fields are given by
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Maximum gain of an antenna

• In the far field, the radiated power density is given by :

• And the radiated power by
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Maximum gain of an antenna

• We finally get

• Which we need to maximize

MAG-EPFL 52

Maximum gain of an antenna (linear 
polarization)

• After some cumbersome computations and using the 
spherical wave expansions, limiting the number of modes 
(wave functions) to N, we finally get :

2 2G N N 

Thus, if the number of modes can be increased, the gain 
has potentially no limit
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Maximum gain of an antenna

• What limits the gain :
• Possibility to manufacture an antenna radiating many propagating 

modes

• Losses (higher order modes have usually higher losses)

• Bandwidth (the more modes, the smaller the bandwidth
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Practical gain limitation

Wave impedance 
of a TM wave
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Maximum gain for a practical bandwidth : N = 
ka

a/

G
 [

dB
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MAG-EPFL 56

Combination of elementary sources

x

z
y

J
Mx

z
y

Depending on combination od type of source, orientation
and phases, we obtain
• LP or CP
• Q0 or Q0/2
• G=1.5 or G=3

See: D. Pozar, New Results for Minimum Q, Maximum Gain, and Polarization Properties of 
Electrically Small Arbitrary Antennas, EuCAP 2009
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Comparison with measured gains

Circular parabolic reflector antenna:
Size 146 Gmeasured: 50.4 dBi, Gmax: 53.3 dBi

Pyramidal horn antenna:
Size 7.5 Gmeasured: 24.5 dBi, Gmax: 27.7 dBi

Narda horn antenna:
Size 2.5 Gmeasured: 15-16 dBi, Gmax: 18.7 dBi

Rolled slot antenna:
Size 0.2 Gmeasured: -11.7 dBi, Gmax: 2.6 dBi

Slot-Dipole antenna:
Size 0.2 Gmeasured: 0 dBi, Gmax: 2.6 dBi
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limitations including antenna form factor

• works by several authors, the most interesting by Gustafsson et al. 

• Mats Gustafsson, Christian Sohl, Gerhard Kristensson, Physical 
limitations on antennas of arbitrary shape, Proceedings of the Royal 
Society of London A: Mathematical, Physical and Engineering Sciences, 
vol 463, pp. 2589-2607, 2007

• Mats Gustafsson, Christian Sohl, Gerhard Kristensson, Illustrations of 
new physical bounds on linearly polarized antennas, IEEE transactions 
on antennas and propagation, vol. 59, 2009, pp. 1319-1327
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example

from IEEE Trans. on AP, VOL. 57, NO. 5, MAY 2009, Gustafsson et al. 
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IMPLANTBLE ANTENNAS
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System Requirements
• Data transmission
• Wearer comfort

• large autonomy => Low power consumption 
• small volume, conformable, flexible
• sufficient reading distance

• Wearer health
• avoid battery if possible (implants)
• biocompatible encapsulation(implants)
• emission values have to be respected
• max SAR has to be respected
• high reliability (implants)
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Antenna requirements

• Physically small => electrically very small @ 
MedRad, TETRA or ISM bands

• Enough bandwidth for the required data 
transmission

• Good radiation efficiency 

We want to maximize the power radiated 

out/away of the body



MAG-EPFL 63

Antennas radiating into a lossy medium

generic antenna for MedRadio, 
derived from design in:
J.Kim and Y. Rhamat-Samii, 
IEEE Trans. MTT, vol. 52. 
pp. 1934-1943, 2004
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Antennas radiating into a lossy medium : 
effect on bandwidth

What is the meaning of the bandwidth ?
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Antennas radiating into a lossy medium : 
effect on the pattern

Origin at center Origin at topAntenna with uniform
curent

R. Moore, “Effects of a surrounding conducting medium on 
antenna analysis,” IEEE Trans. AP., vol. 11, no. 3, pp. 216–
225, May 1963
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Antennas radiating into a lossy medium : 
effect on the pattern

In the case of our
implantable antenna

What is the meaning of the radiation pattern ?
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Antennas radiating into a lossy medium : 
Definition of efficiency ?
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In the case of an implanted antenna : 
free spaceRad
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P
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 

Depends on the host body !!!
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Main issues

• We have an electrically small antenna problem

• But : the antenna radiates into a lossy medium first, then into free space 

• An insulation layer is required between the antenna and the lossy
medium

• How does this modify our design strategy from a classical electrically 
small antenna design ?

• How does this affect the antenna characterization ?  

• What is an adequate model of the host body ?

• What implications do the safety issues have ?
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Antenna

‐ near field Lossy Matter

Free space

‐ far field

Antennas in Lossy Matter

• Strong coupling between the near‐field and the surrounding materials

• Attenuation of the far field propagating in the lossy dielectrics
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THE SPHERICAL WAVE CANONICAL 
MODEL

A better understanding is needed
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Canonical Implant:  the elementary dipole

• Electrically small source is located inside the 
surface of the body (spherical medium which can be 
single- or multi-layered)

Single-layer @ 403.5 MHz
IEEE Head model... r = 43.5 - j34.75 

Multi-layer @ 403.5 MHz
Muscle… 82mm r = 57.10 –
j35.51
Fat… 86 mm r = 5.58 – j1.83
Dry skin… 90 mm r = 46.7 –j30.72

Air sphere rimpl = 1 mm (unless 
written otherwise)

M. Bosiljevac, Z. Sipus, and A. K. Skrivervik, “Propagation in Finite 
Lossy Media: An Application to WBAN”

MAG-EPFL 72

Spherical mode expansion
• We can express the EM field via spherical modes:

• The solution scheme:
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Implanted case – Influence of the position of the 

antenna @ 403.5 MHz
- dipole is moved parallel to the boundary

• Total radiated power as a function of the source position
→ comparison with Huygens source 

rimpl = 1 mm
rbody = 90 mm
r,body = 43.5-j34.75
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rbody = 90 mm
r,body = 43.5-
j34.75
f = 403.5 
MHz

Implanted case – Influence of the position and the size of the 
air sphere
@ 403.5 MHz
- Dipole is moved parallel to the boundary (y-polarization, moved 

in x or z direction)
- Total radiated power as a function of the source position and 

the radius of the air sphere
rimpl

z

x

y
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f = 403.5 MHz
εbody = 43.50 – j34.75
f = 800 MHz
εbody = 41.5 - j20.22 
f = 2000 MHz
εbody = 40.0 - j12.58 

Implanted case – Influence of the position and the size of the 
air sphere
- Dipole is moved parallel to the boundary (y-polarization, 

moved in x or z)
- Total radiated power as a function of the frequency and of the 

source position
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Implanted case – Near and far field outside the phantom
- Dipole is in parallel to the interface
- f=403 MHz

Electric field at a distance of 10 cm of the 
centre of the phantom versus the angle.

Electric far field versus the  angle, for an 
electric source at 403 MHz
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Implanted case – Near and far field outside the phantom
- Dipole is parallel to the interface
- f=2.45 GHz

Electric field at a distance of 10 cm of the 
centre of the phatonm versus the angle.

Electric far field versus the  angle, for an 
electric source at 403 MHz
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Decrease of power due to the lossy medium

f: 403 MHz
rbody: 9cm
rimpl: 1mm
r,body = 43.5-j34.75
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Effect of near field coupling to the lossy
medium

f: 403 MHz
rbody: 9cm
r,body = 43.5-j34.75
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Effect of spherical modesf: 403 MHz
rbody: 9cm
rimpl: 1mm
r,body = 43.5-j34.75

Electric source Magnetic source
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Impedance of spherical modes
f: 403 MHz
rbody: 9cm
rimpl: 1mm
r,body = 43.5-j34.75

Electric source Magnetic source

The outer radius of the reactive near-field region of the nth 
spherical harmonic is defined with:

β – propagation constant in lossy media

r n 
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• The losses of an implantable antenna will depend on three main 
contributions: the near field losses, the propagating field losses, and the 
reflection at the body/air interface. 

• The near field losses depend on the type of the radiating source (electric 
or magnetic) and the electric size of the lossless encapsulation around the 
antenna

• For an electrically small encapsulation, a magnetic type of antenna is more 
favorable than an electric one

• In order to avoid unnecessary losses, the antenna should only excite 
modes with order n < krimpl, to keep the near fields as much as possible in 
the lossless encapsulation of the antenna. Indeed, as seen in Figure 11, 
the distance of influence of the near fields increases with the order of the 
mode.

Desing rules
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First approximate bounds obtained using SWE 
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Application: homogeneous muscle phantom

• At low frequencies near field losses dominate
• At high frequencies propagating losses dominate

Rimpl= 1 mm
Rbody= 90 mm
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Comparison to uncertainties due to tissue 
parameters

Permittivity is varied by 20 %
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EXAMPLE1 : THE DESIGN OF ANTENNA FOR AN 
IMPLANTABLE GENERIC BODY MONITORING MODULE

dual band antenna : data transmission @ 401-406 MHz, wake up signal @ 2.45 GHz

Figure of merit: maximize reading distance
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3
2
 m

m

10 mm

Skin

Antenna conception

‐ F. Merli et al., “Implanted Antenna for Biomedical Applications,”
AP‐S 2008, San Diego.

32 mm

Biocompatible insulation

Circuitry

Battery

Sensor
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Antenna Structure

Multilayered
Spiral design

Conformal
Ground 
plane

Circuitry

Battery

Sensor
‐ F. Merli et al., “Design, realization and measurements of a miniature antenna for implantable

wireless communication systems,” IEEE Trans. on AP., submitted for publication.

‐ L. Bolomey et al., “Telemetry system for sensing applications in lossy media”, Patent application: 00335/10.

3
2
 m

m

10 mm
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Antenna Realization

size 10x32mm

Substrate: Roget TMM (εr =
9.2)

Insulation: PEEK (εr = 3.2)
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Antenna Matching measurement (in‐vitro)

EM performances of the antenna alone have been checked 
with a feeding coaxial cable (present only for testing 
purposes).

Liquid Body 
phantoms
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System Measurements In‐vitro 
Zarlink BS is always considered
System controlled via a laptop 
(Labview)

Outdoor MedRadio Tests:
‐ TX power ‐3 dBm

channel max range [m]

0 7

4 14

9 14

base station

implant
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System In‐vivo 

Target:

Continuous monitoring of subcutaneous temperature of a porcine 
animal (= pig)

Implantation (in collaboration with the Stem Cell Dynamics 
Laboratory, LDCS): 

Two devices have been implanted at different locations,

‐ subcutaneous (5 mm)

‐ in muscle tissue (30 mm)

Characteristics:

‐Measurement during the implantation procedure

‐ Temperature check every 5 min. Complete working cycle 
(wake‐up,  measurement, transmission…) for 15 days 
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System In‐vivo 

Implantation in
accordance to all ethical
considerations and the
regulatory issues related
to animal experiments.

In vitro sensor for
room temperature
comparison
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System Measurements In‐vivo 

Highest relative 
error

(biological 
explanation)
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Comparison SWE with real antenna results

Considering rimpl = 5mm and rbody = 45 mm

Full wave simulation
Antenna efficiency: -32.6 dB

In vitro measurements: 
Antenna efficiency: -33 dB

Full wave simulation
Antenna efficiency: -20 dB

In vitro measurements: 
Antenna efficiency: -21 dB
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Examples: Real (but ideal) matched
antennas

Electrical
dimensions

ISM band: 
λ/30

MedRadio band: 
λ/185

Matched with inductance
lumped element:

Matched with capacitance
lumped element:

K. T. McDonald, “Reactance of 
Small Antennas,” 2012

Implantable antennas Ideal antennas

Xin  120
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Compared antennas: the dipole and loop
Dipole Loop
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Analysis of wave impedance

Implantable antennas Wave Impedance

@MedRadio
(403MHz)

Free space

Dipole
Loop
PIFA

W
av

e 
Im

pe
da

nc
e

r=1
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Analysis of wave impedance

Implantable antennas Wave Impedance

@ISM (2.45GHz)

Free space

Dipole
Loop
PIFA

W
av

e 
Im

pe
da

nc
e

r=1
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Radiation efficiency

rad

acc

P

P
 
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Radiation efficiency

Implantable antennas Radiation efficiency

@MedRadio (403 MHz)

Distance of antenna from phantom center [cm]


dB

   
   

  

rad

acc

P

P
 
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Radiation efficiency

Implantable antennas Radiation efficiency

@ISM (2.45GHz)

Distance of antenna from phantom center [cm]


dB

   
   

  

rad

acc

P

P
 
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EXAMPLE 2: ANTENNA FOR A GENERIC 
IMPLANTS FOR RODENTS (MICE)

Remote powered antenna @ ISM 2,45 GHz Band

Figure of Merit: comply to reulatory safety issues
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The problem

• Remote powering

• Short reading distance (5-10 cm)

• Small volume
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The system

• Regulation issues, Base 
station :

• Max EIRP (EU RFID 
regulation): 27dBm

• Max Re[S] at mouse 
position: 10 (50) W/m2

• Max field level at mouse 
position: 87 (193) V/m

• From this we obtain the 
reading distance:

Data RLC2

C1
M2

M1

RECTIFIER

PANT

ZANT

ANTENNA MODEL LOADMODULATOR

 
6

4 Re

EIRP
r cm

S
 
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The system

We would like a re-emmited power of Pout=0.8 dBm

This implies                   

Regulatory compliant  level (                   = 10 W/m2)   ‐>  ≈ 0.588 mW (‐2.3 dBm)
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SAR and Temperature increase

B6F3CI female Mouse, pregnant

28.7 g developed by IT'IS [5]

voxeled at 0.5 mm

[5] ITIS FOUNDATION  http://www.itis.ethz.ch/services/anatomical‐models/animal‐models/

Whole Body SAR = 0.66 W/kg 

(lim. 0.4 / 0.08)

10‐g av. SAR         = 0.78 W/kg 

(lim. 10 / 2)

@ 120 s = max increase 0.151o

To ensure SAR limits, we have
Pout=-11.5 (-4.5) dBm
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The Implant and the antenna

18 mm
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Antenna characteristics

Efficiency including the mouse : -3 dB
Matched to 30-j250 
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Wearable antennas
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EXAMPLE : THE SAR AND EFFICIENCY OF 
DIFFERENT WEARABLE TETRAPOL
ANTENNAS

wearable antenna at 380 MHz for security communications

Figure of merit: maximize distance and robstness
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Antennas compared
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SAR measurement setup  at IT'IS foundation, 
Switzerland

SAR

[W/kg]

Averaging

mass
Occupational exposure

Whole body Head/trunk

IEEE/ICNIRP 10 g 0.4 10

FCC 1 g 0.4 8

Limits
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Simulated results
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Simulated results
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Different ground planes for  the PIFA
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Measured results

PIFA

Hex‐solid

PIFA

Hex‐Air Gap

PIFA

Copper‐mesh

Dipole

Panorama

Averag. 1g 10g 1g 10g 1g 10g 1g 10g

Normal 9.12 4.36 9.2 4.56 4.41 2.31 NA 7.82

Double 

GP 

6.26 3.17 7.32 3.72 2.71 1.42 NA NA

Ext. 

4 mm

3.87 1.96 4.77 2.57 1.6 0.90 NA NA

Ext.

8 mm

3.18 1.75 3.42 1.96 1.09 0.61 NA NA
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Measured efficiency

done in a reverberation chamber at Bluetest
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Measured efficiency
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Measured efficiency
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System measurements

Communication system used
(Courtesy of RUAG SA)
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System measurement

An urban environment : EPFL campus
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System measurements

MAG-EPFL 124

EXAMPLE 2 : THE DESIGN OF WEARABLE UWB ANTENAS
FOR WBAN

UWB, 

Figure of merit: low profile, minimize coupling into the body
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How to decouple an UWB antenna from the Body ?

• Use ground planes
• possible only for polarization orthogonal to the body. 

• for flat (printed) antennas, the ground plane is used to achieve the 
band width => cannot be beneath the antenna

• Use dielectrics to control the near field

• Select the right feed structure
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Printed UWB antenna
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Printed UWB antenna: different feed models

free space

on the body
CPW

Microstrip
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Tri-Pod Kettle Antenna

Etched and 
folded antenna 

parts

Assembled 
antenna with 
the mounted 

connector

TKA 
encapsulated 

in PDMS 

h=8 mm
ø=12 mm
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Tri-Pod Kettle Antenna

MAG-EPFL 130

Some legislation and rules
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Standards and regulations

• Standarts are set to protect our health, e.g in
• food additives

• air or water pollutants

• EM field levels

• SAR levels

• temperature increase

• Each country regulates its standarts

• Standarts are based on the latest sceintific knowledge: they 
may change
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SAR measurement

DASY measurement system from SPEAG
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Examples
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http://ec.europa.eu/health/electromagnetic_fields/docs/emf_comparision_policies_en.pdf
.
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Main regulators

• USA: 
• FCC (Federal communication commission)

• FDA (Food and Drug Administration)

• EU:
• ICNIRP (International Commission on Non-Ionizing Radiation 

Protection)

• Switzerland:
• BAFU (Bundesamt für Umweltschutz), published the Ordinance on 

Non-Ionizing Radiation (ONIR)
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Reference levels for the general population 
recommended by ICNIRP [1] 

[1] Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz) 
International Commission on Non-Ionizing Radiation Protection. Health Phys. 1998, 54, 115-123 
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Regulations USA

Limits depend on frequency allocation: 
electrical field strength is evaluated at 3 meters 
Equivalent Isotropic Radiated Power 

tx txEIRP P G

2 2

3 3
2

0 120 4 3
m m tx tx

E E P G

Z  
 

Almost nothing could work with that! So there are 
exceptions… 

[1] FCC Title 47, Part 15 (47 CFR 15) Rules and regulations regarding unlicensed transmissions 
[2] Texas instruments Application Report SWRA048–May 2005: ISM-Band and Short Range Device 
Regulatory Compliance Overview 
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Regulations USA: the 2.4 -2.4835 GHz ISM 
band

max transmitted power 1 W (+30 dBm) 

[1] FCC Title 47, Part 15 (47 CFR 15) Rules and regulations regarding unlicensed transmissions 
[2] Texas instruments Application Report SWRA048–May 2005: ISM-Band and Short Range Device 
Regulatory Compliance Overview 
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Regulations EU

Limits depend on: 
- Frequency allocations (Non-Specific Short Range Devices SRD) 
- Applications 

[2] Texas instruments Application Report SWRA048–May 2005: ISM-Band and Short Range Device 
Regulatory Compliance Overview 
[3] ERC RECOMMENDATION 70-03 RELATING TO THE USE OF SHORT RANGE DEVICES (SRD) 2011 
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Regulations EU (RFID)

duty cycle? Spread spectrum? Indoor/outdoor? 
Because otherwise we should not transmit more than 500 mW (+27 dBm)… 

[2] Texas instruments Application Report SWRA048–May 2005: ISM-Band and Short Range Device 
Regulatory Compliance Overview 
[3] ERC RECOMMENDATION 70-03 RELATING TO THE USE OF SHORT RANGE DEVICES (SRD) 2011 
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Regulation ISM band summary

• We can transmit up to EIRP = 4 W (+36 dBm) in 
both the USA and EU if 
• Tx < 15% Duty cycle 

• Spread spectrum (more than 75 channels or digital) 

• indoor 

• We can transmit up to EIRP = 1 W (+30 dBm) in 
the USA if 
• Spread spectrum (less than 75 channels or digital) 

• We can always transmit up to EIRP = 0.5 W (+27 
dBm) in the EU 

• We can always transmit up to EIRP = 0.00095 W (-
0.23 dBm, |E|=50 mV/m) in the USA 
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Regulations on SAR

https://arquivo.splat-n.com/engineering/comparison-of-radio-frequency/
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Measurement
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Outline 

• What is the problem

• Baluns

• Wheeler cap method

• System measurements
• Reverberation chamber

• Anechoic chamber
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relevant characteristics

• bandwidth

• max gain

• radiation efficiency
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What is the problem ?

• Commercial DECT antenna :
• Ceramic chip, 6 x 9 x 1.8 mm

• Gain of 2.2dBi at 1.89 GHz

• Max Gain after Harrington : -3.3 dBi !!

• Gain measured at LEMA : -8 ± 2 dBi

• The discrepancy is due to measurement errors
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Spurious radiation from cables

An electrically small antenna is usually neither symmetric, nor asymmetric:

V
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Spurious radiation from cables

2
V
2
V

2
V

2
V

2
V

2
V

2
V

2
V
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Effect of Spurious radiation in the case of the chip antenna

Chip 
antenna
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Effect of Spurious radiation in the case of the chip antenna

Chip 
antenna
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Effects on radiation characteristics

• Unwanted radiation in unwanted directions

• Increase of measured gain up to 10 dB

• Destruction of both polarization and radiation pattern
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Measurement solutions

• Baluns

• Wheeler cap method

• System measurement methods
• reverberation chamber

• anechoic chamber
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Baluns

The  spurious radiation can be 
attenuated using for instance ferrite 
cores, chockes or baluns.
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Baluns

• Advantage :
• good for both circuit and radiation measurements

• Disadvantages :
• mostly narrow-band 

• cumbersome for the characterization of multi-band antennas
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Measurement issues

• ESA are difficult to characterize as they do not have a proper port 
• In certain cases, they cannot be measured as the connection to the 

cable modifies severely their characteristics
• In case of implantable antennas, the problem is worse due to the lossy 

environment. This is an old problem known from microwave 
hyperthermia.

• But it is important to characterize the antenna before implanting the 
system !!!

• F. Merli and A.K.Skrivervik, Design and Measurement Considerations for Implantable Antennas for Telemetry 
Applications, EUCAP 2010, Barcelona
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Illustration : a real case  [1‐2]

insulation

circuitrybatterysensor 
connection

size 10x32mm

antenna

[1] F. Merli, L. Bolomey, J.‐F. Zürcher, G. Corradini, E. Meurville,
and A. K. Skrivervik, “Design, realization and measurements of a
miniature antenna for implantable wireless communication
systems,” IEEE Trans. Antennas Propagat., submitted for
publication.

[2] “Telemetry system for sensing applications in lossy media”,
L. Bolomey; F. Merli; E. Meurville; J‐F. Zürcher and A.K.
Skrivervik, Patent number: 00335/10
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LEMA Miniature Antenna: First simulations and measurements

Electromagnetic performances of the antenna alone have been checked 
with a feeding coaxial cable (present only for testing purposes).
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measurement

simulation
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Main difference between simulation and 
measurement?

As is well known, the feeding
coaxial cable affects the
performances of electrically small
antennas.
In the measurement setup, the
coaxial cable is in direct contact
with the biological liquid!!
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coax. cab. in contact

vacuum shell pres. 0.3mm

reduced body level

delta-gap excitation

simulations

LEMA Miniature Antenna: how to mitigate the cable + body effect?
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LEMA Miniature Antenna: how to mitigate the cable + body effect?

Coaxial cable in direct contact Reduced body phantom level and
ideal excitation
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Some issues with the correct definition of the 
excitations and loads in full-wave simulations

Anja Skrivervik, Microwave and Antenna Group, Ecole Polytechnique 
Fédérale de Lausanne, Switzerland
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Outline

• An example

• Some definitions

• Classification of Full Wave simulation methods

• Numerical excitation of a simulated problem versus physical 
excitation of a component or device
• FDTD (FEM)

• IE + MoM

• Examples
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What is the problem: an old benchmark

G. A. E. Vandenbosch, “State-of-the-art in
antenna software benchmarking—‘Are we there,
yet?’” IEEE Antennas Propag. Mag., vol. 56, no. 4,
pp. 300–308, Aug. 2014.

Benchmark first proposed in the ACE Network of excellence WG 
On numerical simulation, continued by the EurAAP WG on numerical 
simulation
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Results in 2009

G. A. E. Vandenbosch, “State-of-the-art in
antenna software benchmarking—‘Are we there,
yet?’” IEEE Antennas Propag. Mag., vol. 56, no. 4,
pp. 300–308, Aug. 2014.
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Results in 2013

MAG-EPFL 166

Best results in 2013
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Results in 2018

Guy A.E. Vandenbosch, Modeling and Design Tools for Small 
Antennas: State of the Art and Future Perspectives
IEEE Antennas and Propagation Magazine
Year: 2018 , Volume: 60 , Issue: 4
Pages: 18 - 20 
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Some definitions
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Microwave component

1

2

3

4

5

6

Portes

Eléments de circuit

ports

Circuit elements
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Reference planes

i
zi

n

zn
z1

1

On each access line i of a 
component, a coordinate axis zi

is defined. The origin of this axis 
lies in the reference plane of the 
port i.

Assumptions :
•The transmission lines are lossless
•They support only the dominant mode or
any other single mode. If several modes can 
propagate, we will need to define one port per 
mode
•The reference plane is distant enough 
from discontinuities to ensure that the 
none relevant modes are attenuated
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Intermediate findings

• A port is a well defined circuit element

• In microwaves, circuits are defined between ports

• However, elements can be interconnected by just using wires
or soldering them together

• Micorwave measurements can be done at ports only

• What about numarical simulations ???
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An overview on methods

Selection of the Field Propagator

• Integral Equation (IE) model

• Global field propagator

• Differential Equation (DE) model

• Local field propagator

Selection of solution domain

• Time domain

• Frequency domain

Selection of the Sampling Functions

• entire-domain functions

• sub-domain functions
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Solution domain

• Time domain • Frequency domain

t

t
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
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MAG-EPFL 174

Field Propagator

• Local

• An unknown (usually E and H) 
interacts only with its closest
neighbours

• Global

• All unknowns interact with
each other
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Example of local field propagator: 1-D FDTD

Consider the 1-d wave equation    2 2

2 2 2

, ,1u x t u x t

x c t

 


 

And the following grid

For the simulation domain 0 x d 

with
 

 
     

1

1
1

, 1 ,

m

n

n
m m n

x m x

d
x

M
t n t

u u x t u m x n t t

  

 


  

       

xx1 x2 x4x3 x5

x
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Example of local field propagator: 1-D FDTD

We need to find the numerical expression for the derivatives:

     

     
 

2

2

2

, / 2, / 2,
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u x t u x x t u x x t

x x x

u x x t u x t u x x t

x
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




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Example of local field propagator: 1-D FDTD

With:                     we write
c t

r
x





     
     

2 , 2 , ,

, 2 , ,

r u x x t u x t u x x t

u x t t u x t u x t t

        
       

Which can be written as

 2 1 1
1 12 2n n n n n n

m m m m m mr u u u u u u 
     

 1 2 1
1 12 2n n n n n n

m m m m m mu r u u u u u 
     

Each unknown interacts only
With its neighbours
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Initial and boundary conditions

Initial condition in time: required for two time steps

Often, we take

Boundary conditions in space, required at

Dirichlet BC: 

Neumann BC:

1 2 and m mu u

1 20, 0m mu u 

1 and Mx x

 
 

10, 0

, 0

n

n
M

u t u

u d t u

 

 

1 2

1

n n

n n
M M

u u

u u 




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Sources: hard sources

A hard source sets the value of a field at one or more 
grid points equal to a specific function of time and is 
thus a type of Dirichlet BC.

An issue with hard sources is that wave propagating 
towards them are reflected by them, which can cause 
modeling errors. A solution is to remove the source after 
launching the incident wave but before reflections arrive 
at the source location.
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Sources: soft sources
A soft source corresponds to a forcing solution added to 
the wave equations, for EM problems an impressed
electric current. The equation is thus modified as 
follows:

In 1D it becomes

Which can be written as

2
2

2 2

1

c t t
 

  
 

E J
E

     2 2

2 2 2
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      
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Finite element methods

• Very rigorous, as based on function and functional analysis

• More rigorous than FDTD

• Can be used to solve any Partial differential equations

• Can take many forms

• Can be applied in time or frequency domain

• The mathematical source in the simulator is far from a 
physical source at a port!!!

• This problem is common to all simulators with local 
propagators
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Example of global field propagator: Electric Field Integral
equation + Method of Moments



MAG-EPFL 183

Electric field integral equation : principle

pec

Ein
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Electric field integral equation : principle

pec

Ein
Js
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Electric field integral equation : principle

pec

Ein
Js Es

The electric field has to be normal to the body in pec:

0 on thepecin sn× E n× E =
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Electric field integral equation

EJs sE = G J

where G is the Green's function (field of point sources)
for the electric field and 

G f  G(r| r ) f ( r )
sources
 d v 

and finally :

EJin sn× E - n×G J = 0 EFIE

EJG
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Electric field integral equation

Ein
Js Es

Zs

ZsEJin s sn× E - n×G J = J Leontovich impedance
condition
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Method of Moments
Let us consider a MoM using subsectionnal  basis functions 
and a Galerkin testing procedure

The unknown current is expressed as a sum of basis functions
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Method of Moments
The unknown current is expressed as a sum of basis functions
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Galerkin testing procedure
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Mathematical source, 
physically a voltage!! 
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Popular Commercial softwares

• Time domain
• Finite Difference Time Domain (FDTD)

• Discretization of space (3-D) and time

• Requests absorbing boundary conditions

• Local field propagator

• Unknowns E and H fields

• Mathematical excitation is a time pulse in a specific cell.

• Physical feeds are defined as special functions (for instance transmission line 
modes in waveguides or cables)
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Popular Commercial softwares

• Frequency domain
• Finite Element Method (FEM)

• Volume discretization of space (3-D)

• Requests absorbing boundary conditions

• Local field propagator

• Unknowns E and H fields

• Mathematical excitation is a field in a cell. 

• Physical feeds are defined as special functions (for instance as transmission line 
modes)
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Popular Commercial softwares

• Integral Equation + Method of Moment (MoM)
• Surface discretization of conducting surfaces (2-D)

• Global field propagator

• Unknowns are surface currents

• Mathematical excitation is a current or voltage in a cell

• Great flexibility in the feed definition

• Good compatibility with circuit simulators

• Limited treatment of inhomogeneous problems
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How are excitations and lumped loads specified in 
commercial tools ?

• FEM or FDTD 

• IE+MoM
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Modeling issues : Example of FDTD cell

Mathematical excitation in FEM (similar but 

The port excitation is pre-computed : Wave ports or lumped ports 
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Wave ports example: a microstrip line

Wave port: the modes are solved
In the plane transverse to the port
Wave ports solve for characteristic 
impedance and propagation constants
at the port cross-section

An infinite long transmission line is assumed
At the port. It is assumed to support only one 
Mode. This mode is resolved, and used as 
excitation f or the initial problem 

We have a port in the circuit sense
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Lumped ports

• Lumped ports excite a simplified, single-mode field excitation assuming 
a user-supplied Zo for S-parameter referencing

• A Terminal line may still be defined, but only one per port.
• Impedance and Propagation constants are not computed
• Port boundaries are simplified to support simple uniform field 

distributions.
• Edges touching perfect_E or finite conductivity faces, such as ground 

planes and traces, take on the same definition for the port computation
• Edges not touching conductors become perfect_H edges for the port 

computation
• This is different than the assumption made by Wave ports!!
• Impedance and Calibration line assignments are required for Lumped 

port assignments
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Wave ports versus lumped ports 

• Wave Ports are more Rigorous
• True modal field distribution solution

• Multiple mode, multiple terminal support

• Use Wave ports by preference if there are no specific reasons their usage would be discouraged

• Port Spacing may force Selection
• Widely spaced individual excitations usually permit Wave ports

• Closer-spaced, yet still individual excitations may require Lumped ports

• Closely-spaced, coupled excitations require Wave ports

• Only Wave Ports handle multiple modes, multiple terminals.

• Port Location may force Selection
• Wave ports are best on model exterior surface; interior use requires cap

• Lumped ports are best for internal excitations, where caps would provide undue disruption to modeled geometry and fields

• Wave Ports permit de-embedding to remove excess uniform input transmission lengths

• Lumped Ports cannot be de-embedded to remove or add uniform input transmission lengths

• Transmission Line and Solution Frequency may force Selection
• Lumped Ports support only uniform field distributions

• Only Wave Ports solve for TE mode distributions, TM mode distributions, or multiple modes in same location

• Most non-TEM excitations will require Wave Ports
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Excitations and Ports in IE+MoM
- The unknown is the surface or volume current
- - The mathematical source is a volage
- - thus no problem
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Lumped loads

Loads are not on TLines Loads are on TLs

s

° ° ° ° ° ° ° °

d
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Lumped loads not on TLs (not linked to ports)

• For FDTD and FEM, they are represented by surfaces, and a 
new complete simulations will have to be made for each
change of load

https://apps.lumerical.com/rf_pcb_microstrip_rlc.html
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Lumped loads are not on TLs (not linked to ports)

• For IE+MoM, some time can be saved (in theory)

After discretization of the integral equation and projection 
on the test function, we obtain :

    
       

ex

mom load ex

Z I V

Z I Z I V



 

[Zload] is a diagonal matrix containing the load impedances

 MoMZ Needs to be computed only once
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Summary

• The largest source of mistakes or discrepancy in EM 
numerical modelling is due to the handling of the ports. 

• A port is defined on a guiding structure

• It is difficult to handle lumped elements in EM simulators

• The user needs to be careful !


